Analysis of the Wallowa-Baker terrane boundary: Implications for tectonic accretion in the Blue Mountains province, northeastern Oregon

Joshua J. Schwartz, Arthur W. Snoke, Carol D. Frost, Calvin G. Barnes, L. Peter Gromet and Kenneth Johnson

Geological Society of America Bulletin 2010;122:517-536
doi: 10.1130/B26493.1
Analysis of the Wallowa-Baker terrane boundary: Implications for tectonic accretion in the Blue Mountains province, northeastern Oregon

Joshua J. Schwartz1,†, Arthur W. Snoke1, Carol D. Frost1, Calvin G. Barnes2, L. Peter Gromet3, and Kenneth Johnson4
1Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA
2Department of Geosciences, Texas Tech University, Lubbock, Texas 79409-1053, USA
3Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, USA
4Department of Natural Sciences, University of Houston–Downtown, Houston, Texas 77002, USA

ABSTRACT

The Baker terrane, exposed in the Blue Mountains province of northeastern Oregon, is a long-lived, ancient (late Paleozoic–early Mesozoic) accretionary complex with an associated forearc. This composite terrane lies between the partially coeval Wallowa and Olds Ferry island-arc terranes. The northern margin of the Baker terrane is a broad zone (>25 km wide) of fault-bounded, imbricated slabs and slices of metagneous and metasedimentary rocks faulted into chert-argillite mélangé of the Elkhorn Ridge Argillite. Metaplutonic rocks within tectonic units in this zone crystallized between 231 and 226 Ma and have low initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (0.7033–0.7034) and positive initial ε_{Nd} values (+7.7 to +8.5). In contrast, siliceous argillites from the chert-argillite mélangé have initial $^{87}\text{Sr}/^{86}\text{Sr}$ values ranging from 0.7073 to 0.7094 and initial ε_{Nd} values between −4.7 and −7.8. We interpret this broad, imbricate fault zone as a fundamental tectonic boundary that separates the distal, Wallowa island-arc terrane from the Baker accretionary-complex terrane. We propose that this terrane boundary is an example of a broad zone of imbrication made up of slabs and slices of arc crust tectonically mixed within an accretionary complex, providing an on-land, ancient analog to the actualistic arc-collisional zone developed along the margins of the Molucca Sea of the central equatorial Indo-Pacific region.

INTRODUCTION

Subduction-related accretionary complexes are fundamental lithotectonic units in orogenic belts and are considered to be a hallmark of Phanerozoic-type, plate-tectonic processes (Hamilton, 1998a, 1998b; McCall, 2003; Cawood et al., 2006; Shervais, 2006). Active accretionary wedges can reflect a long-lived history that may span 50 Ma or more (e.g., Barbados Ridge complex; Westbrook, 1982; Westbrook et al., 1988; Torrini and Speed, 1989), whereas ancient accretionary complexes can reflect an even longer history (Cordey and Schiarrizza, 1993) that may involve collisional deformation events as well as subduction-accretion processes such as offscraping, subduction erosion, and tectonic underplating (Byrne, 1984; Sample and Fisher, 1986; Scholl and von Huene, 2007). Hence, accretionary complexes commonly include a mixture of rock types that could not have formed in a single tectonic setting (e.g., oceanic components are intermixed with arc components; Shervais, 2006).

The architecture of active subduction-related accretionary wedges has been studied by marine geophysical surveys (e.g., Hamilton, 1979; Snyder et al., 1996; Bader et al., 1999; Pubellier et al., 1999) that have yielded complex structural histories involving imbrication of oceanic lithosphere (ophiolitic suites), forearc extension and/or contraction, delineation of supra-subduction thrust belts and/or broad zones of mélangé, and tectonic wedging. Despite the significance of these marine geophysical studies in developing a broad understanding of the development of accretionary wedges in a variety of tectonic settings (e.g., arc-continent collision, arc-arc collision, transpressional transtensional regime), many aspects of the deformational history of long-lived accretionary complexes remain poorly understood. What metamorphic conditions accompany deformation in an evolving orogenic wedge? Direct examination of exposed, on-land, ancient accretionary complexes can provide insights into these accretionary processes, which are largely inaccessible by conventional marine geophysical techniques.

The Baker terrane of northeastern Oregon (Fig. 1) is a well-exposed example of a long-lived accretionary complex that has broad similarities to other subduction-related terranes of the western North American Cordillera (Cowen, 1985; Dickinson, 2004, 2008; Snoke, 2005). In this paper, we examine the structural, geochemical, and isotopic nature of a slab mélangé (i.e., fault-bounded slabs or slices of metagneous and metasedimentary rocks in argillite-matrix mélangé) in the Baker terrane and its significance in the deformational history of this long-lived accretionary complex. In particular, we focus on the northern margin of the Baker terrane and propose that slabs/slices of metagneous rocks in the Bourne subterrane record the imbrication of the southern Wallowa arc terrane during a collisional orogeny in the Blue Mountains province (Fig. 1). This zone of tectonic imbrication is not significantly overprinted by younger deformation and thus provides an important opportunity to study primary structural features related to subduction and upper-crustal strain localization in an orogenic wedge during a long-lived accretionary history and a progressive arc-arc collision.

GEOLOGIC FRAMEWORK OF THE BLUE MOUNTAINS PROVINCE

The Blue Mountains province of northeastern Oregon and western Idaho (Fig. 1) consists of a group of large-scale, erosional inliers of Middle Devonian–Late Jurassic oceanic-affinity rocks intruded by Late Jurassic–Early Cretaceous plutonic complexes exposed beneath a widespread cover of chiefly Cenozoic rocks (Walker, 1977; Orr et al., 1992). Within the Blue Mountains, many previous authors have recognized four or five tectonostratigraphic terranes (Fig. 1; Brooks and Vallier, 1978; Dickinson and Thayer, 1978; Dickinson, 1979; Silberling et al., 1987):
from basalt to rhyolite. The underlying basement is not exposed. Walker (1986) reported an age of ca. 235 Ma from a tonalite stock that intruded rocks of the Olds Ferry terrane; however, U-Pb geochronological studies from the Huntington Formation (part of the Olds Ferry terrane) indicate that volcanism may have lasted into Early Jurassic time (Tumpane et al., 2008). Geologic mapping and structural studies near Huntington, Oregon (Avé Lallemant, 1983) indicate that the arc-affinity rocks of the Olds Ferry terrane (i.e., Huntington Formation) are structurally overlain by a penetratively deformed Jurassic flysch sequence (i.e., Lower to Middle Jurassic Weatherby Formation) with southerly vergent folds. The Jurassic flysch sequence (part of the Izee Basin “terrane” according to Dickinson [1979]) is bounded on the northwest by the reverse-sense, northeast-striking, northwest-dipping Connor Creek fault (Brooks and Vallier, 1978), which emplaced rocks of the Baker terrane onto the younger footwall rocks. The Lookout Mountain stock, dated at ca. 124 Ma by U-Pb zircon techniques, intruded both the footwall and hanging-wall blocks of the Connor Creek fault and thereby provides a minimum age on displacement associated with this important tectonic boundary (Walker, 1986, 1989).

Baker Terrane

The Baker terrane lies between the Wallowa arc terrane to the north and the Olds Ferry arc terrane to the southeast (Fig. 1). It is the oldest and most structurally complex terrane in the Blue Mountains province, containing extensively disrupted fragments of ocean-floor (non-arc) and island-arc volcanic, plutonic, and sedimentary rocks ranging in age from Middle Devonian to Early Jurassic (?) (Nestell, 1983; Coward, 1983; Walker, 1986, 1995; Blome and Nestell, 1991; Carpenter and Walker, 1992; Nestell et al., 1995; Nestell and Nestell, 1998; Nestell and Orchard, 2000). The Baker terrane contains at least two subterrane (the Bourne and Greenhorn subterrane; Fig. 1), which preserve a complex history of deposition, magmatism, metamorphism, and structural processes marginal to the Wallowa and Olds Ferry arc terranes (Ferns and Brooks, 1995).

Greenhorn Subterrane

The Greenhorn subterrane is dominated by serpentinite-matrix mélangé containing large blocks of metaplate, metavolcanic (locally pillowed), metavolcaniclastic rocks, and chert-argillite breccia. Moderate- to high-pressure metamorphic rocks (5–6 kbar, or 0.5–0.6 GPa) have been found within mélange of the Greenhorn subterrane (Bishop, 1995). Permian--
Triassic conglomerate/grit, sandstone, argillite, and limestone of the Badger Creek metasedimentary unit apparently overlie the serpentinite-matrix mélangé (Wheeler, 1976; Mullen, 1978; Ferns and Brooks, 1995). Polymict conglomerate in the Badger Creek unit records erosion of nearby subjacent metamorphosed and lineated gabbro, greenstone, chert, and serpentinite- and talc-matrix rocks (Ferns and Ramp, 1988) during deposition. The presence of altered ultramafic rocks indicates that deposition of the Badger Creek unit continued after serpentinization, which is imprecisely dated between Late Permian and Late Triassic time (Carpenter and Walker, 1992; Ferns and Brooks, 1995). Fusulinids in the Greenhorn subterrane are of McCloud affinity (Mullen, 1978). Jones et al. (1976) reported a well-preserved radiolarian fauna of Early and Middle Jurassic age from a block of black chert in serpentinite about 14.5 km southwest of John Day, Oregon (this serpentinite-matrix mélange [Miller Mountain mélange] is inferred to be part of the Greenhorn subterrane, west of the Canyon Mountain complex).

The relationship of the Canyon Mountain complex to the Greenhorn subterrane or Olds Ferry terrane is an unresolved issue in the Blue Mountains province. Some workers have suggested that the Canyon Mountain complex is a large tectonic slab within serpentinite-matrix mélange (e.g., Brooks and Vallier, 1978; Dickinson and Thayer, 1978; Dickinson, 1979; Mullen, 1983, 1985; Walker, 1995). In contrast, Avé Lallemant (1995) suggested that the Canyon Mountain complex represents the Permian part of the Olds Ferry volcanic island-arc terrane. U-Pb zircon ages from hornblende tonalite and metatromlhdjmite from the Canyon Mountain complex have yielded Permian ages that range from 276 to 268 Ma (Walker, 1995, his Table 6.2). However, a sample of metamorphic age from the eastern part of the gabbroic zone (zone 2 of Avé Lallemant, 1976) yielded a minimum age of ca. 278 Ma and older components that suggested a protolith age older than ca. 314 Ma (Walker, 1995, p. 259). Major-, minor-, and trace-element studies on various rocks from the Canyon Mountain complex (Gerlach et al., 1981a, 1981b; Leeman et al., 1995) also indicate a multiphase petrogenesis, although the abundance of silicic igneous rocks (plagiogranite and keratophyre) and the relative depletions of Nb and Ta in basaltic rocks of the mixed volcanic and silt unit of the complex indicate subduction-related magmatism in proximity to a volcanic arc. If the Canyon Mountain complex is truly a part of the Greenhorn subterrane, the published geochronological and geochemical data are compatible with a phase of Permian magmatism in an island-arc setting (Mullen, 1983, 1985) during rifting, as proposed in the tectonic models presented in Hawkins et al. (1984, see their Figures 10–12) for the progressive rifting of an intra-oceanic island arc during seaward rollback of the subducting oceanic lithospheric slab.

Bourne Subterrane

The Bourne subterrane of the Baker terrane is characterized by extensive exposures of stratially disrupted chert and argillite (chert-argillite mélange) of the Elkhorn Ridge Argillite (Pardee and Hewett, 1914; Gilluly, 1937; Coward, 1983). Meter-scale blocks of coherent, bedded argillite and ribbon chert also occur within the Elkhorn Ridge Argillite, and they are commonly isoclinically folded and cut by a penetrative spaced-cleavage, faults, and/or zones of cataclasite. Limestone blocks (olistoliths or tectonic blocks) are enclosed within the Elkhorn Ridge Argillite and contain fusulinids, conodonts, corals, and crinoids of Middle Devonian to Late Triassic age (Vallier et al., 1977; Wardlaw et al., 1982; Nestell, 1983; Nestell et al., 1995; Nestell and Nestell, 1998; Nestell and Orchard, 2000). Radiolarian-bearing cherts from the Elkhorn Ridge Argillite are Permian to Early Jurassic (?) in age (Coward, 1983; Blome et al., 1986; Ferns et al., 1987; F. Cordey, 2006–2009, personal communication), indicating that deep-sea deposition possibly continued into Jurassic time. Both Tethyan and McCloud fusulinids are reported from the Bourne subterrane (Bostwick and Koch, 1962; Bostwick and Nestell, 1965; Nestell, 1983). The presence of McCloud-type fauna in rocks of the Bourne and Greenhorn subterrane implies a paleogeographic tie to an inferred oceanic arc that fringed the continental margin of western North America in Permian time (Miller, 1987).

The Bourne subterrane also contains fault-bounded slabs or slices of arc-related plutonic/hypabyssal, volcanioclastic, and sedimentary rocks—all metamorphosed under lower greenschist-facies conditions—within the Elkhorn Ridge Argillite (see Jurassic to Pennsylvanian metasedimentary rocks in Fig. 2) (Stimson, 1980; Brooks et al., 1982a, 1982b; Evans, 1986, 1989, 1995; Ferns et al., 1987; Bishop, 1995; Ferns and Brooks, 1995; Schwartz et al., 2005, 2006). These slabs/slices generally are separated from adjacent overlying and underlying Elkhorn Ridge Argillite by moderate- to low-angle, southward-dipping, reverse-sense faults (Ferns and Brooks, 1995). U-Pb zircon ages for these metaplutonic rocks range from ca. 230 to 245 Ma (Walker, 1995) and include metagneous, fault-bounded slices.
in the Burnt River Schist (interpreted as a higher-grade equivalent of the Elkhorn Ridge Argillite; Ashley, 1967, 1995). Trace-element discrimination diagrams imply that these metavolcanic and metaplutonic rocks were generated in a suprasubduction-zone setting, suggesting an intra-oceanic island-arc setting for their formation (Mullen, 1985; Ferns and Brooks, 1995). Based on petrologic, geochemical, and age similarities, Ferns and Brooks (1995) suggested that these slabs of metagneous and metasedimentary rocks represent imbricated fragments of the nearby Wallowa island-arc terrane, which became tectonically intercalated into the Baker terrane in post–Late Triassic time. These slabs and their tectonic significance are the primary focus of this study.

In addition to arc-derived metagneous fault-bounded slabs, fragments of nonarc metavolcanic rocks are also present within the Bourne subterranne (Olive Creek unit of Ferns and Brooks, 1995), and they typically occur as fault-bounded slices near the tectonic boundary between the Bourne and Greenhorn subterraneas (Ferns and Brooks, 1995). These rocks consist of alkaline pillow basalts and related volcanlastic rocks with geochemical characteristics similar to ocean-island basalts (within-plate alkali basalts of Mullen, 1985). They are also geochemically distinct from the arc-related, metagneous rocks distributed along the Wallowa-Baker terrane margin, and they have been interpreted to represent fragments of non-arc oceanic crust faulted into the Bourne subterranne during a period of collision between the Wallowa and Olds Ferry terraneas (Ferns and Brooks, 1995).

Relationship between Island-Arc Terranes and the Baker Terrane

The relationship between the Wallowa and Olds Ferry island-arc terranes is poorly understood, but it is critically important in paleotectonic reconstructions of the Blue Mountains province, as well as the North American Cordillera. Some authors argue that the Wallowa and Olds Ferry arc terranes represent a single, complex island-arc system (e.g., Pessagno and Blome, 1986; Vallier, 1995), whereas other authors suggest that the Olds Ferry terrane was a fringing, continental-margin, island arc (e.g., Miller, 1987; Avé Lallemant, 1995) analogous to the Quesneilla arc (Mortimer, 1987) of the Canadian Cordillera, and the Wallowa terrane was an exotic, far-traveled island arc (e.g., Sarewitz, 1983; Ferns and Brooks, 1995; Moores et al., 2002). Follo (1994, p. 26) argued that the Wallowa terrane developed at low northerly paleolatitudes as part of an east-facing oceanic-arc system that was separated from the North American continental margin by a narrow ocean basin.

The relationship between the Baker terrane and Wallowa and Olds Ferry arc terranes is also controversial, stemming in part from the presence of both Tethyan and McCloud fauna in the Baker terrane. In some models (e.g., White et al., 1992; Vallier, 1995), the Baker terrane is a far-traveled, exotic terrane with closer affinities to the Wallowa arc than the North American continental margin, whereas in other models (Oldow et al., 1989; Burchfiel et al., 1992; Avé Lallemant, 1995), the Baker terrane is genetically linked to the Olds Ferry terrane and the North American margin. Each of these contrasting models makes specific predictions about the crustal structure and location of lithospheric suture zones in the Blue Mountains province. In the “far-traveled terrane” model, the Baker–Olds Ferry terrane boundary is a lithospheric suture. In the “pericratonic-terrane” model, this lithospheric suture lies instead between the Baker and Wallowa terranes. The location and nature of these potential suture zones not only represent first-order tectonic problems in the Blue Mountains province, but they also have implications for the interpretation of Mesozoic–Cenozoic magmatism and postulated lithospheric displacements during the Cretaceous (e.g., Leeman et al., 1992). However, both interpretations are permissive in terms of the present faunal data.

By the Late Jurassic–Early Cretaceous, the three major terranes (Olds Ferry, Baker, and Wallowa) of the Blue Mountains province had been amalgamated and intruded by post-tectonic batholiths and plutons (Armstrong et al., 1977; Vallier and Brooks, 1986; Walker 1986, 1989; Sneè et al., 1995; Vallier, 1995). The Bald Mountain Batholith intrudes the Bourne subterranne and Wallowa terrane and constrains amalgamation to prior to ca. 143 Ma (Walker, 1989). The oldest pluton in the Wallowa Batholith yielded a U-Pb zircon age of ca. 137 Ma, and the youngest post-tectonic arc pluton in the Blue Mountains province is ca. 120 Ma (Walker, 1989).

Cenozoic rotation of the whole Blue Mountains province is based on the paleomagnetic data reported in Wilson and Cox (1980) for Cretaceous–Jurassic intrusions in the Blue Mountains and the early Tertiary Clarno Formation. These authors demonstrated ~60° of clockwise vertical-axis, tectonic rotation of the Blue Mountains province prior to the Eocene. Restoration of that clockwise rotation brings the Blue Mountains into a more north-south orientation and provides a prerotation framework to attempt potential terrane correlations to either the north or south. Interestingly, Wilson and Cox (1980) also speculated that the clockwise rotation of the Blue Mountains was related to Late Cretaceous right-lateral strike-slip faulting—a hypothesis that has recently been explored in detail by Wylde and Wright (2001), Wylde (2005), Giorgis et al. (2005), and Housen and Dorsey (2005).

METHODS

Detailed geologic-structural mapping was conducted in the Cougar Basin (Fig. 3) and Marble Point areas (Fig. 4). All rocks from the Cougar Basin and Marble Point areas are affected by varying degrees of greenschist-facies alteration associated with fluid transport. Samples for major- and trace-element, and Rb-Sr and Sm-Nd isotope geochemistry were selected to represent the major rocks types of the Bourne subterranne and were collected from the least-altered and least-deformed rocks to minimize effects of greenschist-facies alteration. Rock chips were handpicked at the University of Wyoming, and weathered and greenschist-facies veins were discarded. Despite these precautions, some rock analyses indicate element mobility (e.g., elevated Na₂O concentrations) suggestive of Na metasomatism.

Geochemical sampling consists of nine samples of Elkhorn Ridge Argillite, three samples of Burnt River Schist (a possible higher-grade equivalent of the Elkhorn Ridge Argillite), four samples of metaplutonic rocks, and six samples of metasedimentary rocks associated with the metaplutonic rocks (informally referred to as the “Cougarc Basin metasedimentary sequence”). Samples for isotopic analyses were selected from a subset of these analyzed samples. Samples collected for U-Pb geochronology consist of a metamylonite from the Marble Point area (EHP-04–3) and a metadiorite from the Cougar Basin area (EHP1–05–3). Sample locations are shown on

Figure 3. Geologic map of the Cougar Basin area (Elkhorn Peak 7.5 min quadrangle) in the Bourne subterranne of the Baker terrane showing fault-bounded slices of arc-related rocks intercalated within (meta)sedimentary rocks of the accretionary complex. Locations of geochemical samples are shown by stars, and the geochronologic sample is depicted as a gray circle. Geology is modified from Ferns et al. (1987).
EXPLANATION

- **Qg**: Quaternary glacial deposits, undifferentiated
- **bmb**: Bald Mountain Batholith (Cretaceous-Jurassic)
- **era**: Elkhorn Ridge Argillite (Jurassic-Pennsylvanian)
- **chms**: Cougar Basin Metasedimentary Sequence (Triassic?)
- **mic**: Metavolcanic Complex (Triassic-Permian)
- **mvc**: Metaintrusive Complex (Triassic-Permian)
- **Contact—dashed where inferred**
- **Fault—Sawteeth on upper plate of thrust fault, dashed where approximate, dotted where inferred**
- **Geochemical and isotope sample**
- **U-Pb zircon sample**

Figure 3.
Figure 4. Geologic map of the Marble Point area (Elkhorn Peak 7.5 min quadrangle) in the Bourne subterrane of the Baker terrane showing fault-bounded slices of arc-related rocks intercalated within (meta)sedimentary rocks of the accretionary complex. Locations of geochemical samples are shown by stars, and the geochronologic sample is depicted as a gray circle. Geology is modified from Ferns et al. (1987).
Figures 3 and 4, and UTM locations are given in GSA Data Repository Table DR1.1. Data for these samples are presented in Tables 1–3.

Whole-rock geochemical analyses were performed at Texas Tech University by inductively coupled plasma–atomic emission spectrometry (ICP-AES) for major elements, plus Sr, Zr, Y, Nb, Ba, Be, Sc, Cu, Cr, and Zn. Nd and Sr isotopic compositions were determined at the University of Wyoming by thermal ionization mass spectrometry (TIMS). Sm, Nd, Rh, and Sr concentrations were determined by isotope dilution (ID) on aliquots of the same sample dissolved for isotope ratio measurements. Further analytical details are given in footnotes to Tables 1 and 2.

Zircons were separated from whole-rock samples following standard crushing methods involving density (Wilfley table and heavy liquids) and magnetic (Frantz isodynamic separator) separation techniques. Nonmagnetic zircons (at 1.5 A) were handpicked at Brown University to obtain optically clear, colorless grains free or largely free of mineral and fluid inclusions. Analytical methods followed those of Krogh (1973, 1982). Initial Pb corrections were made using an age-appropriate Pb isotopic composition (Stacey and Kramers, 1975). All U-Pb ages were calculated using PbDAT (Ludwig, 1984) and are reported at 95% confidence limits. Except as noted, crystallization ages were calculated from the weighted average of the 206Pb/238U age.

RESULTS

Field Observations and Petrography of Bourne Subterrene

Elkhorn Ridge Argillite

Elkhorn Ridge Argillite is the most abundant rock type in the Bourne subterrene (Fig. 5A). Fine-grained argillaceous rocks of the Elkhorn Ridge Argillite contain mineral assemblages of quartz + plagioclase + carbonate ± chlorite ± white mica. Grain sizes for these rocks are typically less than 5 µm, and the grains are generally angular to subangular. Poorly preserved recrystallized radiolarian tests were commonly observed.

Metaigneous Fault-Bounded Slabs/Slices

Slabs/slices of metaplutonic, metavolcaniclastic, and associated metasedimentary rocks are ubiquitous in the Bourne subterrene (Figs. 5B–5D) (Stimson, 1980; Brooks et al., 1982a, 1982b; Evans, 1986, 1988, 1995; Ferns et al., 1987; Bishop, 1995; Ferns and Brooks, 1995; Schwartz et al., 2005, 2006). They range in width from meter- to kilometer-scale (Fig. 2) and strike approximately east-west, roughly parallel to the penetrative cleavage and associated hinge lines developed in the Elkhorn Ridge Argillite. Metaplutonic rocks occur as isolated bodies of hornblende gabbro to quartz diorite, which locally grade into fine-grained diorite. On Marble Point, fine-grained diorite appears to intrude lithic-clast volcaniclastic breccia that contains fragments of metaplutonic, metavolcanic, and metasedimentary rocks, including diorite, an serite, limestone marble, argillite, and siliceous argillite. Greenschist-facies cataclastic veins are characteristic features of both metaplutonic and metavolcaniclastic rocks (e.g., Fig. 5C). In the metavolcaniclastic rocks, cataclastic veins cut across both clasts and matrix, implying that deformation occurred after deposition. Although greenschist-facies cataclastic veins are widely distributed in the metagneissic rocks, they are mostly densely distributed near fault contacts.

Metaplutonic rocks in the Marble Point and Cougar Basin areas chiefly range from diorite to quartz diorite but also include minor gabbro. Magmatic mineral assemblages include plagioclase + green hornblende ± quartz ± zircon ± apatite. Clinopyroxene, biotite, and potassium feldspar are not present. Hornblende is generally pale green in plane-polarized light and forms stout prisms. Magmatic fabrics are sometimes overprinted by high-temperature deformational fabrics defined by ribbon quartz characterized by highly flattened and elongated grains with sutured boundaries.

Nearly all metaplutonic rocks are overprinted to varying degrees by greenschist-facies metamorphic assemblages of albite + clinzoisite + chlorite ± titanite ± epidote ± tourmaline. These metamorphic mineral assemblages are associated with zones of cataclastic deformation and brittle fractures, which cut across pre-existing and higher-temperature fabrics (Figs. 6A–6D). Plagioclase is commonly altered to albite and saussurite and has microfracturing along cleavage planes. Hornblende also commonly has microfracturing, and, in some cases, cleavage planes are filled with metamorphic titanite.

Metavolcaniclastic rocks contain a variety of phenocrysts and crystal and lithic fragments in a fine-grained groundmass. Crystal fragments consist of quartz, zoned plagioclase feldspar, and calcite. Rock fragments consist of amygdaloidal volcanic rocks, siliceous metavolcanic rocks, limestone, and recrystallized chert. Probable devitrified glass is present in some samples and displays magmatic flow banding textures. Although secondary chlorite is present in all samples, these rocks are generally not as pervasively altered as the metaplutonic rocks. Zones of cataclastic deformation are common, typically within the fine-grained groundmass (Figs. 6E–6F).

Cougar Basin Metasedimentary Rocks

Relatively coherent sequences of (meta)sedimentary rocks (Cougar Basin metasedimentary sequence) are faulted into the metaplutonic and metavolcaniclastic rocks. Metasedimentary rocks of the Cougar Basin metasedimentary sequence consist of polymeric pebble conglomerate, sandstone, tuffaceous (?) and siliceous argillite, and limestone (Figs. 5D, 6G–6H, and 7). Ferns et al. (1987) reported early Norian conodonts from limestones in these fault-bounded slabs/slices. Compared to the (meta) sedimentary rocks of the Elkhorn Ridge Argillite, the Cougar Basin rocks are not as pervasively deformed and consequently retain some of their original sedimentary features, including original bedding and flame structures. Based on crosscutting relationships, thrusting of the Cougar Basin metasedimentary rocks into metavolcaniclastic and metaplutonic rocks postdated the development of penetrative cleavage observed in the Elkhorn Ridge Argillite (cf. Figs. 3 and 4).

Siliceous argillites and sandstones in the Cougar Basin metasedimentary sequence contain detrital mineral assemblages of albite + calcite + actinolite + chlorite ± biotite (e.g., Figs. 6G–6H). These rocks are distinct from the Elkhorn Ridge Argillite in having a greater modal percentage of carbonate and albite and less abundant quartz. Fragments of fine-grained recrystallized chert and siliceous plutonic rocks are commonly observed. Flattened and recrystallized radiolarian tests are also observed in argillaceous rocks and are locally concentrated near contacts with sandstones.

Structural Observations in the Bourne Subterrene

Early Structures in the Elkhorn Ridge Argillite

Primary sedimentary layering is generally absent; it is only locally preserved in large blocks of chert-argillite surrounded by anastomosing zones of centimeter-scale cataclasite. Inverted graded bedding indicates overturning of sedimentary units. Original chert-argillite layering in the Elkhorn Ridge Argillite is disrupted by layer-parallel extension along centimeter- to meter-scale, low-angle, cataclastic shear zones.

Penetrative Fabric Development in the Elkhorn Ridge Argillite

The most prominent structural feature in the Elkhorn Ridge Argillite is the development of a
penetrative spaced-cleavage and folding along gently plunging east-west–trending fold axes (Avé Lallemant et al., 1980; Coward, 1983; Avé Lallemant, 1995). In the Marble Point and Cougar Basin areas, the penetrative spaced-cleavage typically strikes east-west and dips to the south. Subparallel orientations of bedding and the penetrative cleavage suggest that bedding has been locally transposed by isoclinal folds that developed during low-grade regional metamorphism. Penetrative fabric development apparently involved significant dissolution (Avé Lallemant, 1995), which may have resulted in trace-element mobilization in the Elkhorn Ridge Argillite (see Geochemistry and Isotopic Results section). The orientation of the east-west–trending fold axes is also subparallel to strike of major faults, which emplaced the metaplutonic and metavo-

clastic rocks into the Elkhorn Ridge Argillite. Near fault contacts with the metagranitic rocks, cataclastic deformation within chert-argillite layers is more intense, and greenschist-facies fluid alteration is strongly developed. A final phase of open, steeply plunging north-south–trending folds overprints earlier fabrics, but these folds are not associated with the development of a penetrative cleavage (Coward, 1983).

TABLE 1. MAJOR- AND TRACE-ELEMENT DATA FOR METASEDIMENTARY AND METAPLUTONIC ROCKS OF THE BAKER TERRANE

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>ERA-1</th>
<th>ERA-1R</th>
<th>EHP-04-4</th>
<th>EHP01-05-10</th>
<th>BM97-2</th>
<th>BM97-3</th>
<th>BM97-5</th>
<th>BM97-7</th>
<th>BM97-9</th>
<th>BM97-10</th>
<th>BM97-11</th>
<th>BM97-12A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.24</td>
<td>74.7</td>
<td>81.5</td>
<td>75.53</td>
<td>82.57</td>
<td>94.72</td>
<td>78.30</td>
<td>93.16</td>
<td>91.73</td>
<td>93.20</td>
<td>78.18</td>
<td>97.70</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.61</td>
<td>0.64</td>
<td>0.67</td>
<td>0.37</td>
<td>0.14</td>
<td>0.47</td>
<td>0.16</td>
<td>0.12</td>
<td>0.18</td>
<td>0.58</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.44</td>
<td>11.51</td>
<td>8.22</td>
<td>9.79</td>
<td>7.57</td>
<td>3.17</td>
<td>8.00</td>
<td>3.26</td>
<td>3.12</td>
<td>3.40</td>
<td>9.46</td>
<td>1.11</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.93</td>
<td>4.04</td>
<td>3.19</td>
<td>4.58</td>
<td>3.30</td>
<td>0.93</td>
<td>4.03</td>
<td>1.11</td>
<td>1.94</td>
<td>1.14</td>
<td>3.79</td>
<td>0.83</td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.18</td>
<td>0.01</td>
<td>0.06</td>
<td>0.01</td>
<td>0.12</td>
<td>0.02</td>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>MgO</td>
<td>2.06</td>
<td>2.06</td>
<td>1.72</td>
<td>2.49</td>
<td>1.44</td>
<td>0.44</td>
<td>1.66</td>
<td>0.42</td>
<td>1.15</td>
<td>0.65</td>
<td>1.33</td>
<td>0.21</td>
</tr>
<tr>
<td>CaO</td>
<td>0.11</td>
<td>0.14</td>
<td>0.09</td>
<td>0.21</td>
<td>0.22</td>
<td>0.02</td>
<td>1.29</td>
<td>0.05</td>
<td>0.95</td>
<td>0.04</td>
<td>0.23</td>
<td>0.03</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.09</td>
<td>1.15</td>
<td>0.34</td>
<td>1.10</td>
<td>0.98</td>
<td>0.07</td>
<td>0.93</td>
<td>0.19</td>
<td>0.23</td>
<td>0.26</td>
<td>0.78</td>
<td>0.02</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.65</td>
<td>2.78</td>
<td>2.38</td>
<td>2.10</td>
<td>2.07</td>
<td>0.99</td>
<td>1.79</td>
<td>0.85</td>
<td>0.44</td>
<td>0.71</td>
<td>2.14</td>
<td>0.26</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.09</td>
<td>0.08</td>
<td>0.01</td>
<td>0.13</td>
<td>0.06</td>
<td>0.02</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>LOI</td>
<td>2.68</td>
<td>2.88</td>
<td>2.13</td>
<td>2.71</td>
<td>1.48</td>
<td>0.90</td>
<td>3.25</td>
<td>0.87</td>
<td>1.04</td>
<td>0.90</td>
<td>0.42</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Note: Samples were fused in lithium carbonate and dissolved in 50 ml of 5% HCl solution for inductively coupled plasma–atomic emission spectrometry (ICP-AES) and flame-emission analysis. Relative uncertainties at the 95% confidence level are <1% for Si and Al; <2% for V; <3% for Ti, Fe, Mn, Ca, Na, Sr, Ba, and Zr; <5% for K, Mg, Y, and Rb; <10% for P, Sc, Cu and Zn; and <15% for Nb, Cr, and Ni. LOI—loss on ignition.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>77.98</td>
<td>64.76</td>
<td>78.29</td>
<td>74.36</td>
<td>72.95</td>
<td>77.90</td>
<td>54.7</td>
<td>49.78</td>
<td>49.22</td>
<td>47.93</td>
<td>49.12</td>
<td>65.46</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.83</td>
<td>0.44</td>
<td>0.52</td>
<td>0.37</td>
<td>0.38</td>
<td>0.85</td>
<td>1.01</td>
<td>1.04</td>
<td>0.83</td>
<td>0.45</td>
<td>0.44</td>
<td>0.41</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.05</td>
<td>8.51</td>
<td>3.83</td>
<td>4.90</td>
<td>3.78</td>
<td>4.57</td>
<td>9.12</td>
<td>9.58</td>
<td>9.65</td>
<td>8.96</td>
<td>9.66</td>
<td>4.64</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>0.02</td>
<td>0.08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
<td>0.19</td>
<td>0.19</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>2.27</td>
<td>3.87</td>
<td>2.01</td>
<td>1.21</td>
<td>1.31</td>
<td>2.65</td>
<td>4.52</td>
<td>4.46</td>
<td>5.46</td>
<td>8.36</td>
<td>8.11</td>
<td>5.36</td>
</tr>
<tr>
<td>CaO</td>
<td>1.52</td>
<td>3.26</td>
<td>1.31</td>
<td>1.42</td>
<td>4.22</td>
<td>2.10</td>
<td>3.62</td>
<td>10.18</td>
<td>10.25</td>
<td>8.46</td>
<td>8.54</td>
<td>3.84</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.79</td>
<td>2.93</td>
<td>0.99</td>
<td>1.65</td>
<td>1.51</td>
<td>1.71</td>
<td>4.94</td>
<td>1.8</td>
<td>1.83</td>
<td>3.34</td>
<td>3.19</td>
<td>5.22</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.88</td>
<td>1.00</td>
<td>1.33</td>
<td>1.53</td>
<td>1.46</td>
<td>0.52</td>
<td>0.38</td>
<td>0.04</td>
<td>0.06</td>
<td>0.1</td>
<td>0.51</td>
<td>0.71</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
<td>0.24</td>
<td>0.2</td>
<td>0.03</td>
<td>0.09</td>
<td>0.13</td>
<td>0.05</td>
</tr>
<tr>
<td>LOI</td>
<td>1.66</td>
<td>2.29</td>
<td>1.97</td>
<td>1.82</td>
<td>1.92</td>
<td>2.10</td>
<td>2.15</td>
<td>4.18</td>
<td>4.18</td>
<td>4.36</td>
<td>3.11</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Note: Samples were fused in lithium carbonate and dissolved in 50 ml of 5% HCl solution for inductively coupled plasma–atomic emission spectrometry (ICP-AES) and flame-emission analysis. Relative uncertainties at the 95% confidence level are <1% for Si and Al; <2% for V; <3% for Ti, Fe, Mn, Ca, Na, Sr, Ba, and Zr; <5% for K, Mg, Y, and Rb; <10% for P, Sc, Cu and Zn; and <15% for Nb, Cr, and Ni. LOI—loss on ignition.
TABLE 2. Nd AND Sr ISOTOPIC DATA FOR ARGILLOUS AND METAPLUTONIC ROCKS OF THE BAKER TERRANE

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bourne subterrane (metaplutonic rocks)</th>
<th>Bourne subterrane (Elkhorn Ridge Argillite)</th>
<th>Bourne subterrane (Cougar Basin metasedimentary sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ppm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ppm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb/Sr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87Rb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87Sr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143Nd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144Nd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd/Sr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ppm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ppm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd/Sr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial εNd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>model age (Ga)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Initial Nd and Sr isotopic ratios were calculated at 220 Ma for metasedimentary rocks and 250 Ma for metaplutonic rocks. Analytical details: ~80 to 100 mg of sample were dissolved in HF-HNO₃. After conversion to chlorides, one-third of the sample was spiked with 85Sr, and 84Sr/Sr, 87Sr/Sr, 143Nd/144Nd, and 147Sm/144Nd. Rb, Sr, Nd, and Sm concentrations are ±2% of the measured value; uncertainties in initial εNd are ±0.3 epsilon units. Nd model ages were calculated based upon the depleted-mantle model of Goldstein et al. (1984).

TABLE 3. U-Pb ZIRCON ISOTOPIC ANALYSES AND AGES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral properties*</th>
<th>Concentrations†</th>
<th>Atomic ratios§</th>
<th>Ages (Ma)</th>
<th>Pb/U</th>
<th>U/Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Weight (mg)</td>
<td>Pb (ppm)</td>
<td>Pb/U (measured)</td>
<td>206Pb/238U</td>
<td>207Pb/235U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(err abs)</td>
<td>(err abs)</td>
<td>(err abs)</td>
</tr>
</tbody>
</table>

*Zr—zircon; aspect ratio; clr—clear; c—colorless; eu—euhedral; anh—anhedral.
†Weights were estimated and are subject to large uncertainties.
§U/Pb ratios were corrected for total blanks of Pb = 0.10 ± 0.05 ng, U = 0.002 ng, mass fractionation = 0.08 ± 0.06 percent/amu; and initial Pb (Stacey and Kramers, 1975). Errors are reported at 2σ level and refer to last digits.

Ages were calculated from weighted average of 206Pb/238U ages. Errors are reported at 2σ level and refer to last digits.
GEOCHEMICAL DATA

Variations in major- and trace-element concentrations of metagneous rocks are shown in a series of Harker diagrams in Figures 8 and 9. Metagneous rocks have a broad range in SiO$_2$ content, ranging from ~48 to 67 wt%, and Ferns and Brooks (1995) analyzed a plutonic rock from the Bourne subterrane exposed in the Elkhorn Mountains with SiO$_2$ content as high as ~74 wt% (their Table 9.3, sample EP-48). The metaplutonic rocks plot within the low- to medium-potassium field on a K$_2$O versus SiO$_2$ diagram (e.g., Ewart, 1982). A distinguishing feature of these metaplutonic rocks is that CaO and Al$_2$O$_3$ concentrations decrease from gabbroic to granitic compositions, as do CaO/Al$_2$O$_3$ ratios. Concentrations of MgO and Fe$_2$O$_3$ (total Fe expressed as Fe$_2$O$_3$) also decrease with increasing SiO$_2$. There is a suggestion in the data that FeO$_2$ and TiO$_2$ are coupled, and they display enrichment until ~52–54 wt% SiO$_2$, after which, they display decreasing concentrations. Na$_2$O content also increases slightly from gabbroic to granitic compositions.

Concentrations of trace elements for metagneous rocks are plotted against SiO$_2$ in Figure 9. The Rb, Zr, and Ba concentrations increase with increasing SiO$_2$. In contrast, V and Sc display decreasing concentrations from gabbroic to granitic compositions. Y behaves similarly to Fe$_2$O$_3$ and TiO$_2$, showing possible enrichment until ~54 wt% SiO$_2$, and then it displays decreasing concentrations. Sr concentrations do not show a strong relationship with respect to SiO$_2$ content.

Major- and trace-element concentrations for metasedimentary rocks of the Bourne subterrane are also plotted in Harker diagrams in Figures 8 and 9. The Elkhorn Ridge Argillite and Burnt River Schist consistently group together on major- and trace-element plots. They are distinguished from the Cougar Basin metasedimentary sequence rocks by lower concentrations of CaO. They also have slightly lower average concentrations of TiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$, MgO, Na$_2$O, Sr, Y, Ba, and Sc, and higher average concentrations of SiO$_2$, Rb, and Cr. Average concentrations of K$_2$O, P$_2$O$_5$, V, and Zr are indistinguishable.

Figure 5. Photographs of various lithologic units of the Baker terrane. (A) Elkhorn Ridge Argillite displaying characteristics of type II mélange after Cowan (1985). (B) Metavolcaniclastic rock with fragments of limestone, argillite, silicic plutonic, and volcanic rocks. (C) Metamorphosed quartz diorite with high-temperature deformational fabric overprinted by low-temperature, greenschist-facies cataclastic shear bands. (D) Basal unit of a fault-bounded metasedimentary slice in the Cougar Basin area. Field of view is ~10 cm.
Figure 6. Photomicrographs of various rocks of the Bourne subterrane. (A–B) Plane-polarized and cross-polarized light images of a cataclastic shear zone developed in a quartz diorite. Note angular plagioclase (pl) feldspar clasts within a fine-grained matrix (hbl—hornblende). (C–D) Large plagioclase feldspars with through-going microfractures offsetting albite twinning. (E–F) Plane-polarized and cross-polarized light images of a metavolcaniclastic rock deformed by through-going cataclastic shear zones, which disrupt original porphyritic igneous textures. (G–H) Sandstone from the Cougar Basin metasedimentary sequence with detrital fragments of chert, carbonate, plagioclase feldspar, and actinolite (act). Scale bars are 200 μm.
ISOTOPIC DATA

Metaplutonic rocks of the Bourne subterrane are characterized by strongly positive, initial ε_{Nd} values ranging from +7.7 to +8.5 (Fig. 10). Initial $^{87}\text{Sr}/^{86}\text{Sr}$ values are uniform and cluster at 0.7033–0.7034. Both initial $^{87}\text{Sr}/^{86}\text{Sr}$ and $^{143}\text{Nd}/^{144}\text{Nd}$ isotopic compositions are relatively insensitive to variations in SiO_2. The Sm/Nd values exhibited by these rocks (Sm/Nd = 0.2100–0.2974) are much higher than is typical of average North American continental crust (North American Shale Composite [Gromet et al., 1984]: Sm/Nd = 0.1967).

Metamorphosed argillaceous rocks of the Elkhorn Ridge Argillite are characterized by distinctly negative initial ε_{Nd} values of −4.7 to −7.8 and initial $^{87}\text{Sr}/^{86}\text{Sr}$ values of 0.7073–0.7094 (Fig. 10). Neodymium model ages for these rocks range from 1.4 to 1.6 Ga. The range in Sm/Nd exhibited by the Elkhorn Ridge Argillite samples (0.1908–0.1986) overlaps the North American Shale Composite (Gromet et al., 1984; Sm/Nd = 0.1967).

In contrast, the Cougar Basin metasedimentary rocks associated with the metagneous rocks have initial $^{87}\text{Sr}/^{86}\text{Sr}$ values ranging from 0.7046 to 0.7061, and initial ε_{Nd} values of +6.5 to −3.2 (Fig. 10). Calculated neodymium model ages for the Cougar Basin (meta)sedimentary rocks range from 0.7 to 1.4 Ga. The range in Sm/Nd exhibited by these rocks (Sm/Nd = 0.2109–0.2712) is also higher than is typical of average North American continental crust (North American Shale Composite [Gromet et al., 1984]: Sm/Nd = 0.1967).

GEOCHRONOLOGY OF METAIGNEOUS ROCKS

Samples EHP–04–3 (metatonalite; Marble Point) and EHP1–05–3 (metadiorite; Cougar Basin) are cataclastically deformed at greenschist-facies conditions. Sample EHP1–05–3 experienced slightly higher metamorphic conditions (upper greenschist facies) associated with brittle fracturing and kinking of igneous plagioclase and hornblende and metamorphic titanite. Only minor replacement of plagioclase by chlorite and hornblende by actinolite is observed. U–Pb zircon geochronologic data for both samples are plotted on concordia diagrams in Figure 11. All analyses are concordant within uncertainty and show no evidence for inheritance.

Two multigrain zircon fractions from tonalite EHP–04–3 are concordant and yield a weighted average $^{206}\text{Pb}/^{238}\text{U}$ age of 226.0 ± 2.0 Ma (mean square of weighted deviates [MSWD] = 1.6). We interpret this age as the age of crystallization of this rock.

Four multigrain fractions from diorite EHP1–05–3 yielded concordant analyses. The large error ellipses may be attributed to low $^{206}\text{Pb}/^{204}\text{Pb}$ values, possibly associated with an increased degree of metamorphism and fluid alteration. Three of the zircon fractions yielded a weighted average $^{206}\text{Pb}/^{238}\text{U}$ age of 231.4 ± 1.0 Ma (MSWD = 0.4), which is interpreted as the crystallization age. One fraction gave a concordant age of 221.9 ± 1.0 Ma ($^{206}\text{Pb}/^{204}\text{Pb}$ age), which is interpreted to result from younger Pb loss during greenschist-facies metamorphism. This age is interpreted as a maximum age for the timing of Pb loss and deformation.
The Elkhorn Ridge Argillite has negative initial \(^{143}Nd = -7.7 \). The isotopic composition of the miogeocline is more difficult to characterize because of the wide variation in isotopic compositions of Proterozoic to early Mesozoic. These relationships have important implications regarding terrane origin (e.g., pericratonic versus distal), the location of lithospheric suture zones within the Blue Mountains province, and postulated Late Triassic collisions between the Baker terrane and Wallowa island-arc terrane as suggested by Follo (1992) and Dorsey and LaMaskin (2007). In the latter case, Upper Triassic sedimentary rocks of the Cougar Basin metasedimentary sequence and Hurwal Formation are believed to be derived from direct erosion of the Baker terrane, indicating a Late Triassic connection between the two terranes.

Binary Mixing Models

We evaluate the relationship between the Baker terrane and western North American margin, and possible Baker-Wallowa terrane connections, by modeling the compositions of the argillaceous rocks of the Elkhorn Ridge Argillite and Cougar Basin metasedimentary rocks as binary mechanical mixtures of a source with depleted-mantle composition (i.e., an intraoceanic island-arc source) and average North American miogeoclinal sedimentary rocks. The composition of an intraoceanic island-arc source was approximated by metaplutonic rocks of the Bourne subterrane (sample EP4–2 in this study: Sr = 315 ppm; initial \(^{87}Sr/^{86}Sr = 0.7032\); Nd = 4.22 ppm; initial \(^{143}Nd = +7.7 \)). The isotopic composition of the miogeocline is more difficult to characterize because of the wide variation in isotopic compositions of Proterozoic to early Mesozoic. These relationships have important implications regarding terrane origin (e.g., pericratonic versus distal), the location of lithospheric suture zones within the Blue Mountains province, and postulated Late Triassic collisions between the Baker terrane and Wallowa island-arc terrane as suggested by Follo (1992) and Dorsey and LaMaskin (2007). In the latter case, Upper Triassic sedimentary rocks of the Cougar Basin metasedimentary sequence and Hurwal Formation are believed to be derived from direct erosion of the Baker terrane, indicating a Late Triassic connection between the two terranes.

DISCUSSION

Interpretations of Field, Geochemical, and Isotopic Results

Metasedimentary and metagraywacke rocks of the Bourne subterrane display structural, geochemical, and isotopic evidence for both tectonic and sedimentary mixing in an ancient accretionary complex. The dominant stratified rock unit of the Bourne subterrane is the Elkhorn Ridge Argillite, which provides important information about the depositional and paleotectonic setting of the Bourne subterrane in Permian to Early Jurassic time. Field and petrographic observations of the Elkhorn Ridge Argillite indicate that it contains varying contributions of volcaniclastic material, including tuff, tuffaceous argillite, conglomerate with volcanic lithic clasts, and layers of altered mafic lavas (e.g., Gilluly, 1937). Nevertheless, the Elkhorn Ridge Argillite has negative initial \(^{143}Nd = -7.7 \), elevated initial \(^{87}Sr/^{86}Sr\) values (0.7073–0.7094) with respect to metagraywacke rocks, and Mesoproterozoic depleted-mantle Nd model ages of 1.4–1.6 Ga. If these model ages represent the weighted average age of the sources that eroded and contributed detritus to the Elkhorn Ridge Argillite, then even though the Elkhorn Ridge Argillite contains volcaniclastic material, a component of detritus from Proterozoic or older continental crust must also be present.

The slabs/slices of metasedimentary and related metasedimentary rocks (e.g., Cougar Basin metasedimentary sequence) tectonically intermixed along the tectonic boundary of the Baker and Wallowa terranes also have important implications for the tectonic development of the Blue Mountains province. These slabs are characterized by more juvenile and arc-related geochemical and isotopic signatures (Figs. 8–10; Fig. DR1 [see footnote 1]), which are geochemically and isotopically distinct from the more evolved Elkhorn Ridge Argillite (Figs. 8–10). They do not display evidence for extensive layer-parallel disruption as observed in the Elkhorn Ridge Argillite, suggesting that they were incorporated relatively late in the structural history of the Baker terrane. Given the close spatial proximity of these fault-bounded slabs/slices to the Wallowa island-arc terrane, their island-arc geochemical characteristics (Fig. DR1), and similarities between the early Norian Cougar Basin metasedimentary rocks and the Hurwal Formation of the Wallowa terrane (e.g., Follo, 1992), we agree with previous workers (Ferns and Brooks, 1995) in interpreting these slabs as fragments of the Wallowa island-arc terrane that were imbricated and faulted into the Bourne subterrane during a period of arc-arc collision.

An outstanding question in the tectonic development of the Blue Mountains province is the relationship between the Baker and Wallowa terranes prior to imbrication, and their respective proximity to cratonic lithosphere (e.g., western North America) in the late Paleozoic to early Mesozoic. These relationships have important implications regarding terrane origin (e.g., pericratonic versus distal), the location of lithospheric suture zones within the Blue Mountains province, and postulated Late Triassic collisions between the Baker terrane and Wallowa island-arc terrane as suggested by Follo (1992) and Dorsey and LaMaskin (2007). In the latter case, Upper Triassic sedimentary rocks of the Cougar Basin metasedimentary sequence and Hurwal Formation are believed to be derived from direct erosion of the Baker terrane, indicating a Late Triassic connection between the two terranes.

Binary Mixing Models

We evaluate the relationship between the Baker terrane and western North American margin, and possible Baker-Wallowa terrane connections, by modeling the compositions of the argillaceous rocks of the Elkhorn Ridge Argillite and Cougar Basin metasedimentary rocks as binary mechanical mixtures of a source with depleted-mantle composition (i.e., an intraoceanic island-arc source) and average North American miogeoclinal sedimentary rocks. The composition of an intraoceanic island-arc source was approximated by metaplutonic rocks of the Bourne subterrane (sample EP4–2 in this study: Sr = 315 ppm; initial \(^{87}Sr/^{86}Sr = 0.7032\); Nd = 4.22 ppm; initial \(^{143}Nd = +7.7 \)). The isotopic composition of the miogeocline is more difficult to characterize because of the wide variation in isotopic compositions of Proterozoic to early Mesozoic. These relationships have important implications regarding terrane origin (e.g., pericratonic versus distal), the location of lithospheric suture zones within the Blue Mountains province, and postulated Late Triassic collisions between the Baker terrane and Wallowa island-arc terrane as suggested by Follo (1992) and Dorsey and LaMaskin (2007). In the latter case, Upper Triassic sedimentary rocks of the Cougar Basin metasedimentary sequence and Hurwal Formation are believed to be derived from direct erosion of the Baker terrane, indicating a Late Triassic connection between the two terranes.
North American miogeoclinal rocks exposed in southeastern British Columbia (Ghosh and Lambert, 1989; Sr = 339 ppm; initial \(^{87}\text{Sr}/^{86}\text{Sr} = 0.7300;\) Nd = 32 ppm; initial \(\varepsilon_{\text{Nd}} = -15.1\)). We used data from southeastern British Columbia because published isotopic data permit the use of both Sr and Nd isotopes in our binary mixture modeling, whereas data from the U.S. sector of the western North American miogeocline only report Nd isotopic compositions. However, we note that the Nd isotopic compositions used in our mixture modeling also lie within the range of compositions in the U.S. sector of the North American miogeocline. Additionally, we considered a more evolved isotopic end member as a potential source to account for the large potential variation in North American miogeocline end-member compositions (cf. Driver et al., 2000; Omineca crystalline belt: Sr = 133 ppm; initial \(^{87}\text{Sr}/^{86}\text{Sr} = 0.765;\) Nd = 30 ppm; initial \(\varepsilon_{\text{Nd}} = -15\)).

Results of these binary mixing models are plotted on an \(\varepsilon_{\text{Nd}}\) versus initial \(^{87}\text{Sr}/^{86}\text{Sr}\) at 220 Ma isotope variation diagram in Figure 10. The mechanical mixture of depleted mantle-derived arc source with average North American miogeocline rocks intersects fields for both Elkhorn Ridge Argillite and Cougar Basin metasedimentary rocks. Relative proportions of average North American miogeocline required to describe the Cougar Basin metasedimentary rocks are less than 10% and less than 20% for the Elkhorn Ridge Argillite.

Binary mixture models presented here are most consistent with a “pericratonic” origin for the Elkhorn Ridge Argillite and support tectonic models that tie the Baker terrane to the fringing Olds Ferry island arc terrane and the North American margin (e.g., model of Avé Lallemant).
1995). They also demonstrate a limited involvement of an evolved source in the depositional history of the Cougar Basin metasedimentary sequence and Hurwal Formation, and preclude a simple two-component binary mixture of Elkhorn Ridge Argillite with a depleted-mantle arc source in their depositional history. These results suggest that either: (1) metasedimentary rocks of the Cougar Basin metasedimentary sequence and Hurwal Formation were derived from a different chert-argillite sedimentary sequence and Hurwal Formation, and preclude evidence for younger disruption by strike-slip faulting. In central British Columbia, the terrane boundary is characterized by structural stacking of disparate and apparently unrelated rock types (e.g., ultramafic rocks, blueschists, basalts, etc.) in an ancient accretionary complex (Cache Creek terrane), which is juxtaposed against island-arc volcanic rocks of the Quesnel terrane (Struiik et al., 2001). This apparent imbrication may represent a paleosuture zone that has subsequently been overprinted by steeply dipping, strike-slip faults that cut across the original contact. The near-vertical strike-slip fault is commonly mapped as the terrane-bounding contact (e.g., Struiik et al., 2001).

In the Klamath Mountains province (inset Fig. 1), which has served as the archetypical example of a mountain belt that developed by the progressive tectonic accretion of oceanic rocks (e.g., Snoke and Barnes, 2006), fundamental structural contacts between lithotectonic terranes are commonly dissected by younger, high-angle faults, folds, and/or intrusive plutonic bodies that obscure original terrane relationships. In fact, few, if any, original terrane boundaries are preserved in the Klamath Mountains (cf. Snoke and Barnes, 2006). The significant structural and magmatic overprint along terrane boundaries to the north and south of the Blue Mountains province highlights the uniqueness of the Baker-Wallowa terrane boundary as a well-preserved crustal-scale suture zone in the western North American Cordillera.

Crustal Structure of the Bourne Subterrane and Blue Mountains Province

The presence of isotopically juvenile (high εNd, low ⁸⁷Sr/⁸⁶Sr) slabs of metaigneous and related metasedimentary rocks likely derived from the Wallowa island-arc terrane and intercalated into the more-evolved Elkhorn Ridge Argillite suggests that this broad, imbricate fault zone is a fundamental tectonic and isotopic boundary that separates the Wallowa island-arc terrane from the Baker accretionary complex. Within the Bourne subterrane, metagenetic fragments of the Wallowa island arc are distributed over a distance >25 km perpendicular to the inferred Baker-Wallowa margin (Fig. 2), suggesting widespread imbrication of the southern margin of the Wallowa plate beneath the Bourne subterrane in response to collision. These fault slices consistently dip to the south, away from the Wallowa arc terrane, a relationship suggestive of a series of arc-directed back-thrusts related to underthrusting of the Wallowa terrane beneath the Bourne subterrane. Similar-age, northwest-dipping thrust faults to the south (e.g., Conner Creek fault) place the Baker terrane structurally above the Izee terrane and underlying Olds Ferry arc, possibly suggesting a doubly verging orogenic system.

Within the Elkhorn Ridge Argillite, strain was accommodated by the development of east-west–oriented fold axes and penetrative spaced-cleavage associated with dissolution and fluid mobility (Avé Lallemant, 1995). Widespread fluid involvement during deformation is also recognized in greenschist-facies cataclastic shear zones, where metamorphic assemblages of chlorite, epidote, and clinozoisite overprint igneous and sedimentary textures. These features are consistent with the tectonic accretion of the Wallowa island-arc terrane and the Baker accretionary complex during a period of regional greenschist-facies metamorphism in a fluid-rich setting.

Our interpretation of the Bourne-Wallowa terrane boundary raises a number of questions regarding the nature of collisional terrane boundaries and their manifestation in ancient orogenic belts. For example, are diffuse zones of structurally imbricated rocks common at terrane contacts? Are sharp terrane boundaries actually younger faults that have reactivated (or more likely faulted out) original contacts and, consequently, do not preserve fundamental geologic relationships between terranes? To our knowledge, diffuse terrane boundaries are not well preserved in the North American Cordillera. One of the best-preserved Cordilleran terrane boundaries is located to the north of the Blue Mountains between the Cache Creek and Quesnel terranes; this contact also shows evidence for younger disruption by strike-slip faulting. In central British Columbia, the terrane boundary is characterized by structural stacking of disparate and apparently unrelated rock types (e.g., ultramafic rocks, blueschists, basalts, etc.) in an ancient accretionary complex (Cache Creek terrane), which is juxtaposed against island-arc volcanic rocks of the Quesnel terrane (Struiik et al., 2001). This apparent imbrication may represent a paleosuture zone that has subsequently been overprinted by steeply dipping, strike-slip faults that cut across the original contact. The near-vertical strike-slip fault is commonly mapped as the terrane-bounding contact (e.g., Struiik et al., 2001).

Figure 11. U-Pb concordia diagrams for zircons from metapelitic rocks in Marble Point and Cougar Basin areas of the Bourne subterrane. Error ellipses are plotted at 95% confidence limits. MSWD—mean square of weighted deviates.
Timing of Fabric Development and Deformation

A key question in the tectonic development of the Blue Mountains province is the timing of fabric development and its relationship to deformational events within the Baker, Wallowa, and Olds Ferry terranes. In the Baker terrane, the earliest fabrics are layer-parallel extensional fabrics in the Elkhorn Ridge Argillite, which have been interpreted by previous workers to reflect subduction-related deformation of weakly consolidated sediments in an accretionary-prism setting (Cowan, 1985; Avé Lallemant, 1995). The development of these fabrics must predate the youngest deformed sedimentary rocks, which are Late Triassic and possibly Early Jurassic in age (Blome et al., 1983; Coward, 1983). Similar fabrics are also observed in blueschist-facies rocks from the Mitchell area, metamorphism of which was dated at ca. 223 Ma (Hotz et al., 1977). These fabrics are not present in Jurassic sedimentary rocks of the Izee Basin, suggesting that the fabrics formed before Early Jurassic time.

The most prominent structural features of the Baker terrane are the penetrative spaced-cleavage and gently plunging east-west-trending folds (Avé Lallemant, 1995) that postdate the layer-parallel extensional fabric but predate the intrusion of postkinematic, stitching plutons, such as the Bald Mountain Batholith (ca. 143 Ma: Walker, 1989). East-west–trending folds are also present in Izee Basin rocks exposed southwest of John Day, Oregon (Avé Lallemant et al., 1980), and, possibly, similar-age folds trending northeast-southwest are present in the Jurassic Weatherby Formation near Huntington, Oregon (Avé Lallemant, 1983). The youngest deformed rocks in these areas are Middle Jurassic (Callovian). Thrusting related to this event also emplaced the Baker terrane structurally above the Izee Basin sometime prior to the intrusion of the Lookout Mountain stock, which intruded both units ca. 124 Ma (Walker, 1989). Therefore, the timing of penetrative deformation is bracketed between Middle Jurassic (Callovian) and the Early Cretaceous (?) emplacement of the postkinematic Bald Mountain Batholith at ca. 143 Ma. Given the uncertainties in the timing of this event, deformation may have been relatively short-lived, as proposed by Avé Lallemant (1995), or protracted over several million years. Previous authors have interpreted this penetrative deformational event to record the collision of the Wallowa and Olds Ferry arc terranes (e.g., Avé Lallemant, 1995; Ferns and Brooks, 1995). These ideas and possible tectonic scenario for the Blue Mountains province are illustrated in Figure 12 and explored in the following section.

Tectonic Models and Relationship to Modern Arc-Arc Collisional Settings

Modern analogs for the processes that we observe in the Baker terrane may be present in the Molucca Sea (central equatorial Indo-

Figure 12. Tectonic scenario for the Blue Mountains province, and possible modern-day analog. (A) A possible tectonic scenario for the Baker, Wallow, and Olds Ferry terranes in the Mesozoic. In the Middle-Late Jurassic, the Wallowa and Olds Ferry island-arc terranes collided, resulting in imbrication of the southern margin of the Wallowa plate beneath the overlying Bourne subterrane. Underthrusting and synchronous imbrication of the Wallowa arc into the Elkhorn Ridge Argillite may explain the occurrence of metagneous and metasedimentary fault-bounded slabs/slices in the Bourne accretionary complex. (B) Map of the Molucca Sea region, eastern Indonesia, and cross section showing doubly verging subduction system (from Moore et al., 1981). This modern arc-arc collision environment may be analogous to the Blue Mountains province in the Late Triassic to Late Jurassic. The early history (Late Triassic) of the Blue Mountains collisional zone may have been considerably more oblique (transpressional) than the modern Molucca Sea collision zone based on the presence of left-lateral mylonitic shear zones in the Wallowa island-arc terrane (Avé Lallemant et al., 1985; Avé Lallemant and Oldow, 1988; Avé Lallemant, 1995).
Pacific region), where two island-arc systems are colliding (e.g., Silver and Moore, 1978; McCaffrey et al., 1980; Pubellier et al., 1999) (Fig. 12B). Between these two arcs, there is a highly deformed unit of oceanic mélangé consisting of blocks of peridotite, gabbro, pillow basalt, and sedimentary rocks enclosed in a scaly clay matrix (e.g., Silver and Moore, 1978; Hamilton, 1979; Sukamoto et al., 1980; Moore et al., 1981). Larger tectonic slices of high-velocity ultramafic-mafic rocks have been recognized through seismic-reflection profiling and are interpreted to be oceanic crust faulted into the accretionary wedge during the arc-arc collision (e.g., Bader et al., 1999). Geochemical data from these tectonic slabs on Talaud Island indicate that they have mid-ocean-ridge basalt (MORB) affinities (Moore et al., 1981). In the Talaud Island area, the entire mélangé complex is interpreted to have been thrust over both the western arc (Sanghi forearc) and eastern arc (Snellius Ridge–Halmahera island-arc system; see Ballantyne, 1992) during collision (Moore et al., 1981). However, throughout the Molucca Sea region, deformation is heterogeneous and shows a complicated structural response to collision (cf. Pubellier et al., 1999).

In general, the features of the Molucca Sea region display many similarities to the Baker terrane and adjacent island-arc terranes of the Blue Mountains province. These similarities include: (1) two contemporaneous island-arc terranes involved in an arc-arc collision, (2) an intervening tectonic mélangé terrane (Bourne subterrane), (3) tectonic slabs of metagneissic and metasedimentary rocks incorporated into the accretionary complex during collision, (4) underthrusting of an arc terrane (Wallowa terrane) beneath the accretionary complex, and (5) back thrusting of the accretionary complex over both island-arc terranes along oppositely dipping thrust faults presumably during collision. The size of the Molucca Sea region is also similar to the Baker terrane (Figs. 1 and 12). These similarities suggest that the Baker terrane may be an ancient analog to modern Molucca Sea–type arc-arc collision.

An important difference between the Molucca Sea analog and Baker terrane is the reported absence of arc-related, metaplutonic thrust slices in the Molucca Sea collisional zone. In the Blue Mountains, we interpret the arc-related, fault-bounded slices to record the imbrication of the southern Wallowa arc during collision; however, in the Molucca Sea region, strain appears to be accommodated instead by the imbrication of the underlying oceanic plate. Oceanic crustal rocks have been reported at the boundary between the Greenhorn and Bourne subterranes (Olive Creek unit: Ferns and Brooks, 1995), and they may be analogous to ultramafic-mafic (ophiolitic) slices in the Molucca collisional zone. However, these rocks in the Baker terrane are relatively minor with respect to arc-related, fault-bounded slices. This important difference could be a function of either: (1) depth of exposure and incomplete sampling of the Molucca orogenic wedge (i.e., the present erosional surface of the Bourne subterrane samples a deeper portion of the imbricated orogenic wedge); and/or (2) differences in age, thermal conditions, and rheologic behavior of the subducting oceanic plates in these two environments. If the subducting oceanic lithospheric plate in the Molucca Sea region is significantly younger than that which subducted beneath the Baker terrane, strain may have been more easily partitioned into it during collision (cf. summary of ophiolite emplacement mechanisms: Pearce, 2003).

Another difference is that the Baker terrane is interpreted to have experienced widespread subaerial uplift and erosion during collision (e.g., Follo, 1992; LaMaskin et al., 2004; Dorsey and LaMaskin, 2007), whereas in the Molucca Sea region, subaerial exposures of mélangé only occur on isolated islands such as Talaud (e.g., McCaffrey et al., 1980). These differences may indicate that collision is incomplete in the Molucca Sea in comparison with the Blue Mountains province.

CONCLUSIONS

The Baker terrane is a long-lived, ancient accretionary complex that developed in association with island-arc terranes of the paleo-Pacific Ocean. The northern margin of the Baker terrane is characterized by an imbricate fault zone consisting of slabs/slices of subduction-related metaigneous and metasedimentary rocks faulted into argillite-matrix mélangé. These fault-bounded slabs/slices are variable in composition, consisting of arc-related plutonic/hypabyssal, volcaniclastic, and sedimentary rocks—all metamorphosed under lower-greenschist-facies conditions. New U-Pb zircon dates indicate that metamplutonic rocks crystallized in the Middle to Late Triassic (231–226 Ma), and their isotopic compositions show that they were derived from depleted-mantle sources. In contrast, metasedimentary rocks of the argillite-matrix mélangé (Elkhorn Ridge Argillite) are characterized by evolved isotopic signatures, suggesting sediment contribution from cratonic sources. We interpret this broad, imbricate fault zone as a fundamental tectonic boundary that separates the distal Wallowa island-arc terrane from the proximal Baker accretionary-complex terrane. This zone of faulting and tectonic mixing is not significantly overprinted by younger deformation and thus preserves many original features related to subduction and upper-crustal strain localization during an inferred arc-arc collision. We propose that this terrane boundary is an exposed, on-land example of a zone of imbrication and tectonic mixing of arc-crust and oceanic lithosphere analogous to the modern Molucca Sea collisional zone of eastern Indonesia.

ACKNOWLEDGMENTS

We wish to acknowledge constructive journal reviews by Jeffrey Amato, Lang Farmer, and an anonymous reviewer, and discussions with Mark L. Ferns, R. LaMaskin, and Todd LaMaskin. Partial financial support for this work was provided by a W.C. Hayes Fellowship to Schwartz and National Science Foundation (NSF) grant EAR-0711470 to Snake and Frost.

REFERENCES CITED

