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ABSTRACT

This fi eld trip guide describes a two-day excursion through Mesozoic accreted 
terranes of the Blue Mountains Province in northeastern Oregon. Day 1 is focused 
on sedimentary rocks of the Izee terrane. These deposits are divided into two 
 unconformity-bounded megasequences, MS-1 and MS-2, that record two stages of 
syntectonic basin formation. MS-1 (Late Triassic to Early Jurassic) accumulated in 
fault-bounded marine sub-basins on the fl ank of an inferred growing Baker terrane 
thrust belt. MS-1 sandstones, derived from the Baker terrane, contain abundant Paleo-
zoic, Late Paleoproterozoic, and Late Archean detrital-zircon grains. These observa-
tions suggest affi nity of the Baker terrane and MS-1 in the Izee area to portions of the 
Klamath and Sierra Nevada terranes that contain similar detrital-zircon age distri-
butions. MS-2 (Early to early-Late Jurassic) accumulated in a large marine basin that 
received input from low-grade metavolcanic rocks to the east (modern coordinates). 
Detrital zircons are dominated by Mesozoic, Neoproterozoic, and Mesoproterozoic 
grains. Two possible interpretations for MS-2 are: (1) the Jurassic Izee basin was fed 
directly by the large Mesozoic trans-cratonal sediment-dispersal system, or (2) trans-
cratonal sediment was deposited in a Triassic backarc basin in Nevada and was later 
recycled into the Jurassic Izee basin during Cordilleran orogenesis.
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contact editing@geosociety.org. ©2009 The Geological Society of America. All rights reserved.
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INTRODUCTION

This fi eld trip examines Mesozoic rocks in northeastern 
Oregon that make up part of the Blue Mountains Province, an 
allochthonous group of variably metamorphosed, arc- and non-
arc–related rocks in Oregon, Idaho, and Washington (Fig. 1) 
(Hamilton, 1963; Armstrong et al., 1977; Vallier, 1977; 1995; 
Dickinson and Thayer, 1978; Brooks and Vallier, 1978; Sil-
berling et al., 1984). Recent stratigraphic analysis (Dorsey 
and LaMaskin, 2007, 2008) and new geochronologic and geo-
chemical data (Johnson et al., 1995; Johnson and Barnes, 2002; 
LaMaskin et al., 2008; Parker et al., 2008; Schwartz and Snoke, 
2008; Unruh et al., 2008; LaMaskin, 2009; Schwartz et al., 2010) 
challenge traditional models and suggest intriguing new ideas 
for tectonic and magmatic development of the Blue Mountains 
region. The primary objectives of this fi eld trip are to familiarize 
participants with fundamental tectonic problems in the region, 
explore the implications of new data that are being generated in 
these studies, and assess how the Blue Mountains Province may 
fi t into the larger context of Cordilleran tectonics, including rela-
tionships with southern British Columbia terranes to the north, 
Klamath-Sierran terranes to the south, and a Mesozoic thrust belt 
in western Nevada. Day 1 of the trip will focus on the boundary 
zone between the Baker terrane and younger sedimentary rocks 
of the Triassic-Jurassic Izee terrane. Day 2 of the trip will focus 
on Jurassic magmatism and related rocks within the Baker ter-
rane. An important goal of the trip is to integrate information and 
emerging new data from the two study areas.

Rocks of the Blue Mountains Province are commonly 
divided into two late Paleozoic to early Mesozoic volcanic island-
arc assemblages (the Wallowa and Olds Ferry terranes), a Paleo-
zoic to early Mesozoic subduction-accretionary complex (Baker 
terrane), and a Triassic–Jurassic clastic sedimentary succession 
(Izee terrane). The Wallowa terrane (Fig. 1) is a succession of 
island-arc related plutonic, volcanic, and sedimentary rocks of 
Permian through Early Jurassic age (Vallier, 1977, 1995; Walker, 
1986, 1995). The Olds Ferry terrane (Fig. 1) contains island-arc 
related Upper Triassic to Lower Jurassic, volcanic, and marine 
volcaniclastic and epiclastic rocks, as well as small Middle (ca. 

Day 2 of the fi eld trip is focused on Jurassic–Cretaceous magmatism in the Baker 
terrane. Late Middle Jurassic to Early Cretaceous igneous rocks in the Blue Moun-
tains Province record three distinct pulses of plutonism that are characterized by dis-
tinctive spatial and geochemical signatures. These episodes consist of: (1) late Middle 
to Late Jurassic small gabbro to quartz diorite plutons (ca. 162–154 Ma; low Sr/Y); 
(2) Late Jurassic to Early Cretaceous plutons and batholiths (ca. 148 and 137 Ma; 
includes spatially distinct belts of low and high Sr/Y at 147–145 Ma); and (3) Early 
Cretaceous small plutons of tonalitic and trondhjemitic composition (ca. 124–111 Ma). 
Temporal transitions in geochemical characteristics between these suites raise funda-
mental questions regarding the origins of plutonism in the Baker terrane. In particu-
lar, the transition from low Sr/Y (group 1) to high Sr/Y (group 2) magmatism in the 
Greenhorn subterrane occurred ~ 7 Ma after regional contraction, and may record 
partial melting of thickened crust as a direct result of Late Jurassic orogenesis.

Figure 1. Geologic map of the Blue Mountains Province, modifi ed 
from LaMaskin (2009). Ages of plutons shown where data are avail-
able; z—U-Pb zircon age; K-Ar—potassium-argon age. Question 
marks indicate uncertain terrane affi liations and/or terrane boundary 
locations. The Bourne and Greenhorn subterranes, Grindstone terrane, 
and Burnt River Schist are here considered sub-terrane level units of 
the Baker terrane. MS—megasequence (after Dorsey and LaMaskin, 
2007); BRS—Burnt River Schist; BMB—Bald Mountain batholith; 
WB—Wallowa batholith; PCF—Poison Creek fault; Cpx.—complex; 
Ldg.—landing; WA—Washington; OR—Oregon; ID—Idaho. Com-
piled from numerous sources including Dickinson and Vigrass (1965); 
Brown and Thayer (1966; 1977); Thayer and Brown (1966); Hendrick-
sen et al. (1972); Brooks et al. (1976); Dickinson and Thayer (1978); 
Brooks (1979); Walker and MacLeod (1991); Walker (1986; 1995); 
Vallier (1995; 1998); Ashley (1995); Ferns and Brooks (1995); Lee-
man et al. (1995); Ferns et al., (2001); Lewis (2002); Lund (2004); 
Kays et al. (2006); Dorsey and LaMaskin (2007); Mann and Vallier 
(2007); Parker et al. (2008); Unruh et al. (2008); J. Schwartz (unpub-
lished data); K. Johnson (unpublished data).

235 Ma) and Upper Triassic (ca. 218–212 Ma) mafi c to fel-
sic intrusions (Brooks and Vallier, 1978; Vallier, 1995; Walker, 
1986, 1995; Tumpane et al., 2008; LaMaskin, 2008; Unruh et al., 
2008). The Baker terrane accretionary- subduction complex (Fig. 
1) is situated between the Wallowa and Olds Ferry terranes and 
includes both island-arc and non-arc–related rocks (Jones et al., 
1976; Hotz et al., 1977; Carpenter and Walker, 1992; Ferns and 
Brooks, 1995; Leeman et al., 1995; Vallier, 1995; Schwartz et al., 
2010). At least four subterrane-level units within the Baker terrane 
include the Grindstone, Bourne, and Greenhorn subterranes, and 
the Burnt River Schist (Kays et al., 1987; Ashley, 1995; Ferns and 
Brooks, 1995; Schwartz et al., 2006; Schwartz and Snoke, 2008). 
Sedimentary units in the Baker terrane include Devonian through 
Triassic clastic and carbonate successions with minor occurrences 
of Jurassic strata. Rocks traditionally included in the Izee terrane 
(Fig. 1) consist of Triassic and Jurassic dominantly sedimentary 
rocks that are in depositional or fault contact with rocks of the 
Baker terrane in central Oregon. Correlation of Middle Jurassic 
rocks of the Izee terrane with the Coon Hollow Formation in the 
Wallowa terrane suggests that the Izee terrane represents a strati-
graphic overlap assemblage that links the Blue Mountains terranes 
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by Early to Middle Jurassic time (i.e., Pessagno and Blome, 1986; 
White et al., 1992; Dorsey and LaMaskin, 2007, 2008; LaMaskin 
et al., 2008). Regional contractile deformation affected all rocks 
of the Blue Mountains Province in Late Jurassic time (Avé Lalle-
mant, 1995), and terrane amalgamation prior to ca. 144 Ma is sug-
gested by Late Jurassic to Early Cretaceous granodioritic stitching 
plutons (Fig. 1; Walker, 1986, 1989).

Historically, some workers have interpreted rocks of the Blue 
Mountains Province to represent a single, complex far-traveled 
island arc (e.g., Pessagno and Blome, 1986; White et al., 1992; 
Vallier, 1995). Others have suggested that the Blue Mountains 
Province contains both intraoceanic (Wallowa) and continent-
fringing (Olds Ferry) island-arc systems that are separated by a 
subduction/accretionary complex (Baker terrane) (e.g., Dickin-
son, 1979, 2004). Recent work by Dorsey and LaMaskin (2007), 
LaMaskin et al. (2008), and Schwartz et al. (2010) suggests that 
this region underwent an early Mesozoic, Molucca-Sea style arc-
arc collision that involved portions of the Wallowa, Baker, and 
Olds Ferry terranes. In addition, Dorsey and LaMaskin (2007, 
2008) and LaMaskin et al. (2008) proposed that Jurassic sedi-
mentary rocks across the region were deposited in a subsiding 
fl exural basin adjacent to a growing Jurassic orogenic belt in 
western Nevada (Luning-Fencemaker fold-and-thrust belt). The 
diversity of tectonic models refl ects the geologic complexity in 
the region and ongoing attempts to interpret emerging new data 
using comparisons to present-day plate-tectonic settings. 

STRATIGRAPHY AND STRUCTURE OF THE 
IZEE AREA

Paleozoic–Mesozoic serpentinite-matrix mélange of the 
Baker terrane and Triassic to Jurassic sedimentary rocks of the 
Izee terrane are exposed in a large erosional inlier southwest of 
the town of John Day, Oregon (Figs. 1 and 2A; Dickinson and 
Vigrass, 1965; Dickinson and Thayer, 1978). Triassic and Juras-
sic sedimentary rocks can be divided into two regional-scale, 
unconformity-bounded megasequences (Dorsey and LaMaskin, 
2007). Rocks of megasequence 1 include Upper Triassic to Lower 
Jurassic marine strata that experienced signifi cant syndeposi-
tional deformation and are derived dominantly from the Baker 
terrane (i.e., an outboard provenance; Dickinson and Thayer, 
1978; Dorsey and LaMaskin, 2007). Deposits of megasequence 
1 occur in two distinct packages located east and west of the 
southeast-directed Poison Creek reverse fault (Figs. 2A and 2B). 
Units west of the Poison Creek fault include the Upper Triassic 
Vester Formation (~4000 m) and small erosional remnants of the 
overlying Late Triassic Rail Cabin Argillite (~600 m) and Early 
Jurassic Graylock Formation (~150 m). These marine deposits 
rest nonconformably on, and are locally infolded and faulted 
with, serpentinite-matrix mélange of the Baker terrane (Grind-
stone and Greenhorn subterranes; Dickinson and Vigrass, 1965; 
Dickinson and Thayer, 1978; Ferns and Brooks, 1995). East of 
the Poison Creek fault, sedimentary rocks of megasequence 1 are 
age-equivalent to the Rail Cabin Argillite and Graylock Forma-

tion and include a thick package of marine argillite and turbidites 
called the Aldrich Mountains Group (~10,000 m; Dickinson and 
Thayer, 1978). All rocks of megasequence 1 were affected by 
Late Triassic to Early Jurassic deformation and are overlain by 
rocks of megasequence 2 along a regional angular unconformity.

Sedimentary rocks of megasequence 2 in the Izee area 
include the Lower to Upper(?) Jurassic Mowich Group (~500 m) 
and Snowshoe (~1000 m), Trowbridge (~1000 m) and Lonesome 
formations (~3000 m; Fig. 2B). These deposits accumulated in a 
marine basin that experienced regional transgression from Early 
through Middle Jurassic time (ca. 190–161 Ma; Mowich Group 
through Trowbridge Formation) followed by regional regres-
sion in Middle and Late(?) Jurassic time (Lonesome Formation; 
Dickinson 1979; Dickinson et al., 1979). All deposits of megase-
quences 1 and 2 were affected by Late Jurassic contractile defor-
mation (Avé Lallemant, 1995).

DETRITAL-ZIRCON DATA

Detrital-zircon data from rocks of megasequence 1 and 
megasequence 2 in the Izee area record a major shift in prov-
enance from Late Triassic to Middle Jurassic time, consistent 
with provenance trends in sandstone detrital modes identifi ed 
by Dickinson et al. (1979). Late Triassic sediments of the Vester 
Formation are interpreted to be derived from the Baker terrane 
(Dickinson and Thayer, 1978), and the detrital-zircon age dis-
tributions are dominated by Paleozoic, Late Paleoproterozoic, 
and Late Archean ages (LaMaskin, 2009). Crystalline basement 
rocks older than Permian are not known to be present in the Baker 
terrane, and thus detrital-zircon grains in megasequence 1 were 
likely reworked from Paleozoic and Mesozoic(?) clastic rocks of 
the Baker terrane. In contrast, the Jurassic deposits are inferred 
to be derived from inboard sources (Dickinson and Thayer, 
1978). Detrital-zircon age distributions in Jurassic samples are 
dominated by Mesozoic ages and include signifi cant quantities of 
Neoproterozoic and Mesoproterozoic ages with lesser amounts 
of Late Paleoproterozoic ages.

Other accretionary-subduction complexes within terranes 
of the Klamath Mountains and Sierra Nevada are dominated 
by Paleozoic, Late Paleoproterozoic, and Late Archean detrital-
zircon grains such as those eroded from the Baker terrane and 
deposited as megasequence 1 in the Izee region (e.g., Harding 
et al., 2000; Scherer, 2006). This similarity in detrital-zircon age 
distributions suggests that pre-Triassic portions of the Baker ter-
rane and megasequence-1 sediments have a genetic affi nity to 
portions of the Klamath and Sierra Nevada terranes.

In Jurassic samples, signifi cant quantities of Neoproterozoic 
and Mesoproterozoic detrital-zircon grains with lesser amounts 
of Late Paleoproterozoic grains indicate derivation from a pre-
viously documented trans-cratonal sediment-dispersal system 
during Jurassic time (i.e., Rahl et al., 2003; Dickinson and Geh-
rels, 2003, 2009), and suggest proximity of the Jurassic Izee 
basin to the Cordilleran margin. Alternatively, these detrital-
zircon grains may have originally been deposited in the  Triassic 
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back-arc basin in Nevada (i.e., Dickinson and Gehrels, 2008) 
and subsequently eroded from the Luning-Fencemaker fold-and-
thrust belt during Jurassic uplift and erosion (Wyld, 2002; Wyld 
et al., 1996, 2003). Both explanations support a model for mod-
erate post-Jurassic northward translation (~400 km) of the Blue 
Mountains Province (e.g., Wyld and Wright, 2001).

JURASSIC–EARLY CRETACEOUS MAGMATISM IN 
THE BAKER TERRANE

Late Middle Jurassic to Early Cretaceous magmatism in the 
Blue Mountains Province occurred in three distinct pulses of plu-
tonism between 162 and 154 Ma, 148 and 137 Ma, and 124 and 
111 Ma (Walker, 1986, 1989, 1995; Johnson et al., 1995; Johnson 
and Barnes, 2002; Parker et al., 2008; Schwartz and Snoke, 2008; 
Unruh et al., 2008; J. Schwartz and K. Johnson, unpublished data; 
Fig. 3; Table 1). These plutons defi ne spatially distinct belts that 
parallel major tectonic features of the amalgamated Blue Moun-
tains terranes (Wallowa, Baker, and Izee terranes), and formed 
prior to ~60° of post-Cretaceous clockwise rotation (Wilson and 
Cox, 1980). The oldest belt consists of late Middle–Late Jurassic 
plutons in the Wallowa terrane (Unruh et al., 2008) and Baker ter-
rane (Fig. 1) (Parker et al., 2008; J. Schwartz, unpublished data). 
These plutons are typically <3 km2 in areal extent and range in 
composition from gabbro to quartz diorite. Geochemically, they 
are magnesian, calcic to calc-alkalic, and metaluminous, and 
characterized by low Na, Al, Sr, but high Y concentrations (Fig. 
4). This phase of magmatism is coeval with a short-lived epi-
sode of regional contraction in the Baker terrane that is bracketed 
between 159 and 154 Ma (D

2
 of Avé Lallemant, 1995; Schwartz 

and Snoke, 2008).
A second distinct pulse of magmatism occurred between ca. 

148 and 137 Ma and consists of two spatially and geochemically 
distinct belts of high Sr/Y (high Na, Al, Sr, but low Y) plutons 
in the Greenhorn subterrane of the Baker terrane, and low Sr/Y 
(low Na, Al, Sr, but high Y) plutons and batholiths in the Bourne 
subterrane of the Baker terrane and the Wallowa terrane. In the 

Pb/U zircon age (Ma)
160 166150140130120110108

111-124 Ma 137-148 Ma 154-162 Ma

N
um

be
r

0

1

2

3

4

5

6

Figure 3. Histogram of U-Pb zircon ages showing the distribution 
of Middle Jurassic to Early Cretaceous magmatic rocks in the Blue 
Mountains Province. Data compiled from Walker (1986; 1989), Man-
duca (1993), Lee (2004), McClelland and Oldow (2007), Parker et al. 
(2008), Unruh et al. (2008), and J. Schwartz and K. Johnson (unpub-
lished data).
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Bourne subterrane and Wallowa terrane, low Sr/Y plutons and 
batholiths (148–137 Ma) intrude island-arc and related metasedi-
mentary rocks and are similar in composition to older Middle–
Late Jurassic plutons (162–154 Ma belt). In contrast, high Sr/Y 
plutons in the Greenhorn subterrane (147–145 Ma) spatially 
overlap the older low Sr/Y plutons, but are much more composi-
tionally restricted (Fig. 4; Table 1).

The transition from low Sr/Y (162–154 Ma belt) to high 
Sr/Y magmatism (147–145 Ma) in the Greenhorn subterrane 
occurred ~7 Ma after regional contraction, and raises funda-
mental questions regarding the origin of high Sr/Y plutons in 
the Baker terrane. Several geochemical characteristics of the 
high Sr/Y magmas suggest an origin for these rocks by par-
tial melting in the presence of a plagioclase-poor to absent, 
hornblende + garnet-bearing source (depths >40 km). These 
features include: steeply fractionated rare earth element (REE) 
patterns, high Sr/Y values, and little to no Eu anomaly. Does the 
observed change in geochemistry from low Sr/Y to high Sr/Y 
refl ect partial melting of orogenically thickened crust as a direct 
result of Late Jurassic orogenesis?

The last stage of magmatism in the region (pre-Idaho batho-
lith emplacement) consists of small plutons of tonalitic and 
trondhjemitic composition. This group can subdivided into two 
sub-groups: (1) 124–120 Ma metaluminous hornblende-biotite 
tonalite plutons in a northeast-southwest–trending belt located 
east (inboard) of the Late Jurassic belt, and (2) 125–111 Ma, 
strongly peraluminous tonalite and trondhjemite plutons that 
mostly occur in a belt subparallel to the initial Sr isotopic 0.706 
line in western Idaho. These plutons were emplaced >10 Ma after 
Late Jurassic–Early Cretaceous magmatism in the Baker terrane 
(146–137 Ma) and represent a distinct phase of magmatism that 
postdates regional contraction (e.g., Snee et al., 1995; Gray and 
Oldow, 2005) and peak metamorphism (550–600 °C, 8–9 kbar) at 
128 ± 3 Ma in the Salmon River suture zone (Selverstone et al., 
1992; Getty et al., 1993).

REGIONAL TECTONIC IMPLICATIONS

Rocks examined during this fi eld trip highlight an appar-
ent temporal partitioning of sedimentation and magmatism, and 
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 suggest a systematic shift in the locus of crustal thickening, sedi-
mentation and magmatism through time. The majority of Meso-
zoic sedimentation appears to have taken place from Late Triassic 
(ca. 225 Ma) to late Middle Jurassic time (ca. 160 Ma; Dickin-
son and Thayer, 1978; LaMaskin, 2009). In contrast, magmatism 
in the Baker terrane appears to have initiated (?) in late Middle 
Jurassic time (ca. 162 Ma) and continued into the Cretaceous.

We propose a model in which Jurassic sedimentation in the 
Blue Mountains occurred in a subsiding collisional basin adja-
cent to an area of crustal thickening in western Nevada (i.e., 
the  Luning-Fencemaker fold-and-thrust belt; Wyld and Wright, 
2001; Dorsey and LaMaskin, 2007, 2008). Sedimentation in the 
Blue Mountains ceased when crustal thickening stepped out-
board to a location in the Blue Mountains (Greenhorn subterrane 
of the Baker terrane; Ferns and Brooks, 1995). This shift in the 
locus of crustal thickening appears to be recorded by a regional 
contraction event at ca. 159–154 Ma (i.e., D

2
 of Avé Lallemant, 

1995; Schwartz and Snoke, 2008) and by the emplacement of 
high Sr/Y plutons in Late Jurassic to Early Cretaceous time. Sub-
sequently, the locus of crustal thickening in the region shifted 
back to the east (i.e., the Salmon River suture zone) and was 
closely followed by intrusion of small Early Cretaceous tonalitic 
and trondhjemitic plutons.

DAY 1

Directions to Stop 1-1

Begin fi eld trip directions at the intersection of U.S. High-
way 26 and U.S. Highway 395 in John Day, Oregon (Fig. 2A). 
Travel south on U.S. Highway 395 ~18 miles to the intersection 
with County Route 63 (Izee-Paulina Lane). Turn right on County 
Route 63 and travel ~18.4 miles, then turn right onto Forest Ser-
vice Road (FSR) 6370. Continue on winding roads of FSR 6370 
for ~15 miles. Turn right onto FSR 304, a small jeep trail located 
at UTM coordinates 307072E, 4891572N (UTM zone 11, datum 
NAD 83), and follow ~0.3 miles. Park at the entrance to a closed 
FSR at UTM coordinates 307022E, 4891985N. On foot, follow 
closed FSR due west ~1.2 miles, bearing left at intersection with 
FSR 328, to unvegetated hills of serpentinite on the north side 
of the road (end hike on road at UTM coordinates 305460W, 
4892121N). Hike ~0.25 mi due north to chromite mine pits at 
UTM coordinates 305393W, 4892252N.

Stop 1-1. Upper Triassic Vester Formation and Rocks of 
the Baker Terrane

Throughout the Izee region of central Oregon, the Baker ter-
rane forms the basement to the Triassic–Jurassic basinal assem-
blage. Upper Triassic sedimentary rocks of the Vester Formation 
(megasequence 1) are the oldest deposits of the Triassic basinal 
assemblage, and this is a key locality where they rest in deposi-
tional contact on the Baker terrane (Fig. 2). At this location we 
will observe fi eld evidence for the depositional contact between 

the Baker terrane and overlying Vester Formation, and view typi-
cal rock types of the Vester Formation (participants are referred 
to Brown and Thayer, 1977: U.S. Geological Survey [USGS] 
Map I-1021).

In this area, rocks of the Baker terrane include two dominant 
rock types: (1) strongly sheared serpentinite, and (2) metavol-
canic greenstone (Brown and Thayer, 1977). In the immediate 
vicinity of Stop 1-1, serpentinite has been mined for chromite and 
abandoned mine pits can be found at several locations. The Vester 
Formation has been divided into two members: (1) the Begg 
Member (~2500 m) is dominantly chert-rich conglomerate and 
sandstone with lesser amounts of black shale, polymict breccia, 
and local volcanic rocks, and (2) the Brisbois Member (~1250 m) 
is dominantly thin-bedded chert-grain sandstone with local cal-
carenite and limestone olisostromes (Dickinson and Vigrass, 
1965; Brown and Thayer, 1977; Dickinson and Thayer, 1978). 
Paleocurrent indicators reported by Dickinson and Thayer (1978) 
suggest southeast-directed transport (modern coordinates). The 
age of the Begg Member is poorly constrained and may be Late 
Triassic (Carnian) or older, whereas diagnostic pelycepod and 
ammonite faunas in the Brisbois Member suggest a Late Trias-
sic, Carnian age (subbullatus zone; Dickinson and Vigrass, 1965; 
Blome, 1984; Blome et al., 1986).

The sandstone detrital mode of the Vester Formation is 
noteworthy for abundant chert and meta-chert grains in conjunc-
tion with a relatively low abundance of monocrystalline quartz 
grains (Dickinson et al., 1979). The unique framework-grain 
assemblage, paleocurrent indicators suggesting transport away 
from likely source rocks in the Baker terrane, and numerous 
syn- depositional faults, indicate that the Vester Formation was 
derived from uplifted rocks of the Baker terrane during Late Tri-
assic deformation and related basin formation (Dickinson and 
Thayer, 1978; Brown and Thayer, 1977; Dickinson, 1979; Avé 
Lallemant, 1995).

Mapping by Brown and Thayer (1977) at this location shows 
that the Begg Member of the Vester Formation rests in deposi-
tional contact on both serpentinite and metavolcanic greenstone 
of the Baker terrane. The contact is highly irregular and nonpla-
nar, unlike a fault contact, and the mapped attitudes of bedding 
within the Vester Formation generally follow the Vester-Baker 
contact. Following a brief orientation, participants will spend 
some time exploring the contact between rocks of the Baker ter-
rane and the Vester Formation and viewing exposures of chert-
pebble conglomerate and chert-grain sandstone.

Medium-grained, chert-rich sandstone samples from the 
Begg and Brisbois members of the Vester Formation yield 
abundant detrital-zircon grains (Fig. 5). The majority are well-
rounded pink, yellow, or green grains. The samples include 
minor quantities of Mesozoic-age grains (~2% of grains) and 
are dominated by Paleozoic- (~41%) and Precambrian-age 
grains (57%). Prominent peaks in the probability distribution for 
Mesozoic and Paleozoic ages are present at 374 Ma (Devonian), 
311 Ma (Pennsylvanian), and 274 Ma (Permian). The majority of 
Precambrian-age grains are late Paleoproterozoic in age and fall 
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within the range of ca. 2.05–1.7 Ga with peaks present at 1.87 
and 1.99 Ga. Late Archean ages are represented by grains in the 
range of 2.75–2.5 Ga.

Directions to Stop 1-2

Return on foot to vehicles and backtrack to Forest Service 
Road 6370. Turn left onto FSR 6370 and travel 0.4 miles to small 
exposures of limestone on the north side of the road (UTM coor-
dinates 307590E, 4891144N).

Stop 1-2. Upper Triassic Rail Cabin Argillite at 
Graylock Butte

Here we will make a brief stop to examine bioclastic lime-
stone and calcareous quartzose sandstones and pebble con-
glomerates of the Rail Cabin Argillite (Fig. 2A). In this area, 
Upper Triassic and Lower Jurassic rocks that rest on the Vester 
Formation consist of a relatively thin (~760 m) succession of 
shallow-water facies including limestone lenses containing well-
preserved specimens of Halorella that suggest shoaling of the 
former deep-marine setting (Brown and Thayer, 1977). Correla-
tive rocks on the east side of the Poison Creek fault approach 
10,000 m in thickness. Thus syn-depositional motion on the Poi-
son Creek fault appears to have exerted a major structural control 
on deposition, with uplift in the west and subsidence in the east 
during Late Triassic to Early Jurassic time (Brown and Thayer, 
1977; Dickinson and Thayer, 1978).

Sandstone and pebble conglomerate samples at this locality 
contain distinctive quartz grains and clasts that display a wide 
range of sedimentary and metamorphic fabrics. These include 
grains of quartz arenite sandstone, recrystallized quartz display-
ing polygonal grain boundaries and stretched and fl attened fab-
rics (i.e., stretched metamorphic quartz). These types of quartz 
grains and clasts are also present in sediments of the Aldrich 
Mountains Group east of the Poison Creek fault (Fields Creek 
Formation), but they are not observed in the underlying Vester 
Formation. This suggests erosion of a metamorphic source area, 
and supports a model for progressive regional orogenesis in the 
Baker terrane during Upper Triassic and Lower Jurassic time 
(i.e., Dorsey and LaMaskin, 2007; LaMaskin et al., 2008).

0 400 800 1200 1600 2000 2400 2800 3200

R
el

at
iv

e 
p

ro
b

ab
ili

ty

Vester Fm., Begg & 
Brisbois mbrs.
N = 2; n = 217

Age (Ma)

Figure 5. Combined detrital-zircon age distributions from the Begg 
(n = 105) and Brisbois (n = 112) members of the Vester Formation, 
representative of megasequence-1 rocks. Data from LaMaskin (2009).

Directions to Stop 1-3

Continue traveling east on FSR 6370 4.1 miles to promi-
nent exposures on the north side of the road (UTM coordinates 
311540E, 4889821N).

Stop 1-3. Upper Triassic Fields Creek Formation (Aldrich 
Mountains Group) Bouldery Mudstone and Olistostromal 
Slide Blocks

We have crossed over the Poison Creek fault (poorly 
exposed in this area) and passed into exposures of the Fields 
Creek Formation, the lower unit of the Aldrich Mountains Group 
(Fig. 2). Rocks at this stop include an anomalous unit of bouldery 
mudstone and olistostromal slide blocks of limestone and quartz 
sandstone-conglomerate. To the north, exposures of the Fields 
Creek Formation are more typical and include thin- to medium-
bedded turbidite sandstones.

The Aldrich Mountains Group rests locally in depositional 
contact on serpentinite-matrix mélange of the Baker terrane (Fig. 
2; Dickinson and Thayer, 1978). The Fields Creek Formation 
(~4500 m) is a thick turbiditic succession of fi ne-grained sand-
stone and black shale with slide breccias and olistostromes of 
igneous and sedimentary rock types in the lower part (Brown and 
Thayer, 1977; Dickinson and Thayer, 1978). Radiolarian faunas 
from the Fields Creek Formation indicate a Late Triassic, Norian 
age and suggest reworking of older Middle to Late Triassic depos-
its (Blome et al., 1986; Yeh, 1989). The uppermost unit of the 
Aldrich Mountains Group is the Keller Creek Shale (~1500 m) 
which includes volcaniclastic greywacke and is Early Jurassic in 
age (Brown and Thayer, 1977; Imlay, 1986).

A large olistostromal block of quartzose sandstone and 
conglomerate is present just past where the road turns to the 
south (when driving east). The lithology is identical to sand-
stone and conglomerate in the Rail Cabin Argillite west of 
the Poison Creek fault (Stop 1-2). Quartzose grains and clasts 
display a wide range of sedimentary and metamorphic fab-
rics. Other basal sections of the Fields Creek Formation along 
Fields Creek road to the north contain slide blocks and olis-
tostromes of plutonic rocks identical to small plutons in the 
Baker terrane (Carpenter and Walker, 1992; LaMaskin, 2009). 
These relationships and recycled radiolarian faunas (Blome, 
1984; Yeh, 1989) show that the Fields Creek Formation was 
eroded from both the uplifted Baker terrane and from Triassic 
sedimentary rocks of the Rail Cabin Argillite, and deposited in 
a complex fault-bounded basin at the margin of a large active 
thrust belt (Baker terrane).

Directions to Stop 1-4

Continue traveling east on FSR 6370 ~3.4 miles to outcrops 
of gray calcareous sandstone on the north side of the road (UTM 
coordinates 314780E, 4889265N). Fossil-bearing outcrops are 
present at ~3.4 to 3.7 miles from Stop 1-3. 
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Figure 6. Detrital-zircon age distributions from 
 megasequence-2 rocks. Curves represent the summa-
tion of individual detrital-zircon ages and associated 
2-sigma Gaussian errors; associated Y-axes represent 
relative probability. Histograms are based on individual 
 detrital-zircon grain ages and do not incorporate er-
rors; associated Y-axes represent number of grains in a 
given age bin. Shadowed insets show additional detail. 
(A) The Hyde Formation, Lower Jurassic rocks at the 
base of megasequence 2. (B) The Snowshoe Forma-
tion, Middle Jurassic rocks within megasequence 2. 
(C) The Lonesome Formation, Middle to Upper(?) 
Jurassic rocks at the exposed top of megasequence 2. 
Data from LaMaskin (2009).

Stop 1-4. Lower Jurassic Suplee Formation—Fossil 
Collecting Locality

We have now crossed over the regional unconformity 
between megasequence 1 and overlying sedimentary rocks 
of megasequence 2 (Fig. 2). Megasequence-2 deposits record 
a second major phase of subsidence and sedimentation in 
the Izee region. Sediments are dominantly volcaniclastic 
and were derived predominantly from inboard locations to 
the east and northeast (modern coordinates; Dickinson and 
Thayer, 1978). The basal portion of megasequence 2 consists 
of the transgressive, shallow- to deep-marine Mowich Group 
(~690 m; Brown and Thayer, 1977). We will stop to view a 
10–20-m-thick, bioturbated calcareous sandstone unit in the 
Suplee Formation. The Suplee Formation is mainly Pliens-
bachian age (Imlay, 1968) and is richly fossiliferous. Numer-
ous fossils have been collected at localities in the Suplee 
Formation, including ammonites, pelycypods, brachiopods, 
and gastropods.

Turbidite sandstone of the Hyde Formation overlies the 
Suplee Formation and contains abundant detrital-zircon grains 
(Fig. 6A). All zircon grains are Mesozoic and defi ne a unimodal 
probability distribution that spans 191–172 Ma, yielding an Early 
Jurassic peak at ca. 180 Ma.

Directions to Stop 1-5

Continue traveling east on FSR 6370 back to the intersec-
tion with County Route 63. Turn left on Route 63 and travel 
~6.1 miles. Turn left onto National Forest Road 24 and travel 
~1.0 mile to prominent exposures on the east side of the road 
(UTM coordinates 321958E, 4894830N).

Stop 1-5. Middle Jurassic Snowshoe Formation along 
Wikiup Creek

The fi nal stop of the day is in Middle Jurassic turbidites 
of the Snowshoe Formation (Fig. 2), stratigraphically higher in 
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megasequence 2. The Snowshoe Formation is mainly Middle 
Jurassic in age (Imlay, 1986) and is dominated by volcaniclas-
tic turbidites such as those seen at this locality. Here, interbed-
ded mudstone, siltstone and gray sandstone are characteristic 
of the South Fork Member of the Snowshoe Formation (Smith, 
1980). A weighted mean age of ca. 167 Ma for the young-
est group of two or more detrital-zircon grains overlapping 
at 1-sigma for this locality suggests a depositional age at the 
Bathonian-Bajocian boundary, consistent with the biostrati-
graphic age of the South Fork Member (Smith, 1980; Imlay, 
1986; LaMaskin, 2009).

Detrital-zircon grains from this locality are both euhedral-
prismatic, clear-colorless and sub-rounded, pink to yellow 
grains. The sample includes ~64% Mesozoic, 5% Paleozoic, and 
31% Precambrian ages (Fig. 6B). Mesozoic-age zircons form 
a complex, multimodal age distribution with peaks and shoul-
ders in relative probability between 207 and 168 Ma. Abundant 
Mesoproterozoic grains defi ne peaks at ca. 1.46, 1.29, 1.15 and 
1.04 Ga. A Paleoproterozoic peak is present at ca. 1.84 Ga. 
Additional sandstone samples collected from megasequence-2 
turbidite sandstone of the Lonesome Formation yield detrital-
zircon ages similar to those found in the Snowshoe Formation 
(Fig. 6C). Precambrian grains are dominated by Neoproterozoic 
and Mesoproterozoic ages with fewer Paleoproterozoic and only 
scattered Archean ages. A comparison of Precambrian detrital-
zircon ages from the Triassic Vester Formation to the Jurassic 
Snowshoe and Lonesome formations indicates the clear differ-
ence in provenance between outboard-derived sands (Vester 
Formation) and inboard-derived sands (Fig. 7; Snowshoe and 
Lonesome formations).

End of Day 1.
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Figure 7. Comparison of >200 Ma detrital-zircon age distributions 
from megasequence-1 and megasequence-2 rocks. Note the dramatic 
difference between detrital-zircons derived from the outboard Baker 
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2). Data from LaMaskin (2009). Megasequence-2 plot includes un-
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DAY 2

Directions to Stop 2-1

From John Day, drive east on E. Main Street/U.S.-26 and 
continue for 30.8 miles to the northeast. Turn left at National For-
est Development Road (NFD) 2600-437. Drive 1.2 miles. Turn 
right (north) on NFD 369. Drive 0.5 miles and park at intersec-
tion with NFD 352. Hike 0.15 miles N30°E to NFD 301 (UTM 
coordinates 370710E, 4932988N).

Stop 2-1. Basal Section of the Dixie Butte Meta-Andesite 
Complex

At this stop, we will examine the basal section of the Dixie 
Butte Meta-andesite (Fig. 8). The Dixie Butte Meta-andesite 
is exposed over >80 km2, making it one of the largest continu-
ous volcanogenic complexes in the Blue Mountains Province 
(Brooks et al., 1984; Ferns and Brooks, 1995). It consists of a 
lower sequence of tuffaceous sedimentary rocks and volcaniclas-
tic breccias, and an upper sequence of fl ow rocks and subordinate 
volcaniclastic breccias and sills.

The basal portion of the Dixie Butte Meta-andesite is best 
exposed on Dad’s Creek (this stop) and consists of ~2000–
2200 ft of thick-bedded andesitic lithic tuff, lithic-clast volca-
niclastic breccia, tuffaceous sandstone, graphitic argillite, and 
pebble conglomerate. Dominant lithic clasts in the pebble con-
glomerates are trachytic basaltic andesite with subordinate dio-
rite, microdiorite, reworked lithic tuff, and fi ne-grained chert 
and argillite (Fig. 9A). Lithic clasts are subrounded to angular in 
shape. Volcanogenic sandstones locally display normally graded 
bedding. Argillites and fi ne- to medium-grained sandstones grade 
upsection into coarser, lithic-clast volcaniclastic breccias. These 
rocks are in turn overlain by volcanic fl ows and tuffs in the upper 
portion of Dixie Butte (e.g., Fig. 9B; see Stop 2-4).

The relationship between Dixie Butte Meta-andesite and 
older units (e.g., serpentinite-matrix mélange, Badger Creek 
unit [Upper Triassic–Permian]) is poorly understood. Nearby 
chert argillites similar to those found at the base of Dixie Butte 
(this stop) contain Wolfcampian (i.e., Late Permian) radiolarians 
which provide a maximum age for the Dixie Butte Meta-andesite 
complex. Middle to Late Jurassic plutons (Stop 2-2) intrude the 
Dixie Butte Meta-andesite. Together these relationships sug-
gest an age between Late Permian and Middle to Late Jurassic. 
Ongoing detrital zircon work and targeted U-Pb zircon dating of 
andesites are aimed at further constraining the age of the Dixie 
Butte Meta-andesite complex.

Directions to Stop 2-2

Backtrack to U.S.-26. Turn left and continue 2.1 miles 
northeast. Turn left at NFD 2610. Drive 150 feet and turn left 
at NFD 096. Continue 0.9 miles (UTM coordinates 372006E, 
4933394N).
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Figure 8. Geologic map of the Dixie Butte area, Greenhorn subterrane of the Baker terrane, showing 
location of fi eld-trip stops for Day 2. Dixie Butte (meta)andesites and related volcaniclastic rocks are 
intruded by two geochemically distinct suites of low Sr/Y plutons at ca. 162–157 Ma, and high Sr/Y 
plutons at ca. 146 Ma. Modifi ed from Brooks et al. (1984).

Stop 2-2. Dixie Summit Pluton: 162 Ma, Low Sr/Y 
Magmatism

At this stop, we will examine the Dixie Summit pluton in the 
eastern portion of the Dixie Butte area (Fig. 8), where late Middle 
Jurassic plutonic rocks intrude serpentinite-matrix mélange and 
volcanic and related rocks of the Dixie Butte Meta-andesite com-
plex. The Dixie Summit pluton ranges in composition from gab-
bro to quartz diorite, and contains the following primary igneous 
mineral phases: clinopyroxene + plagioclase feldspar ± orthopy-
roxene ± zircon ± apatite. Ophitic texture is common in gabbroic 

and dioritic samples (e.g., Fig. 9C). The primary igneous minerals 
are extensively altered at and/or near dike and dikelet contacts by 
secondary minerals such as chlorite, calcite, albite, or actinolite.

Geochemically, the Dixie Summit plutonic rocks are meta-
luminous, magnesian, and calcic as defi ned by the classifi cation 
of Frost et al. (2001) and Frost and Frost (2008). They display 
high Al

2
O

3
 (>19 wt%), CaO (>10 wt%) and positive Eu anoma-

lies suggestive of plagioclase accumulation. They also display 
slight light rare earth element (LREE) enrichment (La/Lu < 30) 
and low Sr/Y (<26) values. A diorite from this location yielded 
a Pb/U age of 162.0 ± 2.9 Ma (J. Schwartz, unpublished data).
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Several features suggest a possible consanguineous rela-
tionship between the Dixie Summit pluton and the Dixie Butte 
Meta-andesite. Potential comagmatic relationships include: 
(1) the intrusion of 162 Ma gabbro-diorite of the Dixie Sum-
mit pluton into basaltic andesite; (2) fragments of gabbro, 
diorite, and microdiorite in lithic-clast volcaniclastic brec-
cias throughout the Dixie Butte Meta-andesite; (3) intrusion 
of fi ne-grained  plagioclase-phyric meta-andesite dikes and 
dikelets into the Dixie Summit pluton and other similar-age 
plutons at 161.6 ± 2.0 Ma (J. Schwartz, unpublished data); 
and (4) complementary positive Eu anomalies in the Dixie 
Summit and negative Eu anomalies in the Dixie Butte Meta-
andesite as well as other major-element and trace-element 
geochemical characteristics suggestive of a cogenetic rela-
tionship (compare with Dixie Butte Meta-andesite geochemi-
cal data: Stop 2-4).

Other Middle to Late Jurassic plutons in the Dixie Butte area 
display similar geochemical characteristics to the Dixie Sum-
mit pluton (e.g., small plutons and plugs north of Dixie Creek). 
However, along Standard Creek, a Late Jurassic pluton dated at 
157.7 ± 1.5 Ma (Parker et al., 2008) displays ferroan and alkalic 
geochemical characteristics, suggestive of at least two distinct 
sources for Middle-Late Jurassic magmatism and/or differ-
ent modes of differentiation (open-versus closed-system) in the 
Dixie Butte area.

Directions to Stop 2-3

Backtrack to U.S.-26. Turn right and continue 9.0 miles 
southwest. In Prairie City, turn right at NW Johnson Avenue 
which becomes Dixie Creek Road. Continue 4.6 miles (UTM 
coordinates 364462E, 4931445N).
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Figure 9. Photomicrographs of metavolcanic and plutonic rocks of the Dixie Butte area. (A) Crystal lithic-clast volcaniclastic breccia contains 
abundant angular to subrounded trachytic basaltic andesite clasts and detrital augite and plagioclase, with minor chert, graphitic argillite, ortho-
pyroxene, quartz, and carbonate grains. (B) Representative example of the Dixie Butte Meta-andesite fl ow rock displaying porphyritic texture 
consisting of large plagioclase phenocrysts in a fi ne-grained matrix of clinopyroxene and plagioclase microlites. (C) Dixie Summit diorite 
(ca. 162 Ma) displays ophitic texture with resorbed (?) plagioclase surrounded by clinopyroxene. (D) Dixie Creek biotite-hornblende tonalite 
(ca. 146 Ma) has seriate texture consisting of large plagioclase feldspar and quartz with minor hornblende and biotite.
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Stop 2-3. Dixie Creek Pluton: 146 Ma High Sr/Y 
Magmatism

At this stop, we will examine the Dixie Creek pluton, 
which is characteristic of latest Jurassic (ca. 146 Ma) plutonism 
in the Greenhorn subterrane of the Baker terrane (see 146 Ma 
plutons in Fig. 3). The Dixie Creek pluton intrudes meta- 
volcanic rocks of the Dixie Butte Meta-andesite and Badger 
Creek metasedimentary unit (Ferns and Brooks, 1995), which 
contains  Permian–Late Triassic fauna (Brooks et al. 1984; Ferns 
and Brooks, 1995). The Dixie Creek pluton consists of biotite-
hornblende tonalite with minor K-feldspar and accessory zir-
con, sphene, and apatite (e.g., Fig. 9D). Graphic intergrowths of 
quartz and plagioclase are common in some rocks. Secondary 
(deuteric?) alteration of biotite to chlorite is typical, but minor, 
in samples of this plutonic unit.

In contrast to the 162–157 Ma plutons in the Dixie Butte 
area, the Dixie Creek pluton is more compositionally restricted 
(Figs. 4A and 4B), and much less affected by low-temperature 
(greenschist-facies) metamorphism. Dixie Creek plutonic rocks 
displays steeply fractionated REE patterns (Fig. 4C), lack Eu 
anomalies, and have elevated Sr concentrations and Sr/Y values 
(typically >600 ppm and >40, respectively; Fig. 4D). These fea-
tures are fundamentally distinct from the older, low Sr/Y 162–
157 Ma suite, and represent a change in the character of mag-
matism following regional contraction at 159–154 Ma (Schwartz 
and Snoke, 2008).

Directions to Stop 2-4

Drive 0.8 miles north along Dixie Creek Road until road 
forks. Park (UTM coordinates 365140E, 4932498).

Stop 2-4. Volcanic Rocks of the Dixie Butte Meta-Andesite 
Complex

At this stop, we will examine representative volcanic rocks 
of the Dixie Butte Meta-andesite. This outcrop consists of tra-
chytic plagioclase-phyric basaltic andesite, and is characteristic 
of the upper section of the Dixie Butte Meta-andesite. Locally, 
the upper section consists of green to gray, plagioclase- and 
augite-phyric basaltic andesite and andesite fl ows, subordi-
nate volcaniclastic breccias, keratophyre, dark-gray basalt, and 
pale-green silicic fl ows and tuffs (Brooks et al., 1984; Ferns and 
Brooks, 1995). The primary igneous mineral phases of the vol-
canic rocks are plagioclase and augite ± orthopyroxene ± quartz 
(e.g., Fig. 9B). Vesicles are common in some rocks and are typi-
cally fi lled with calcite, quartz, and/or chlorite. No pillow struc-
tures have been observed. Alteration is typically less intense than 
other areas of the Greenhorn subterrane (e.g., Ferns and Brooks, 
1995) and is highly localized at the meter scale. Low-grade meta-
morphism of these rocks may be related to hydrothermal fl uid 
fl ow associated with Jurassic and/or Tertiary magmatism in the 
area (Mark Ferns, 2008, personal commun.). Alteration miner-

als include: chlorite + albite + calcite + actinolite. Flow rocks 
and volcaniclastic breccias in the upper section are intruded by 
fi ne-grained microgabbro and microdiorite sills and dikes with 
chilled margins. Andesitic and silicic dikes locally crosscut fl ows, 
sills, and tuffaceous rocks, as well as the late Middle Jurassic 
(ca. 162 Ma) plutonic rocks (see Stop 2-2). One such dike was 
dated at ca. 162 Ma (see Stop 2-2). No dikes have been observed 
cross-cutting the 146-Ma high Sr/Y plutons.

Geochemically, volcanic rocks of the Dixie Butte Meta-
andesite range from ~53 to 56 wt% SiO

2
 and are characterized by 

high Al
2
O

3
 (16–22 wt%), CaO (6–10 wt%) and Y (16–27 ppm), 

Ni (70–190 ppm), and Cr (150–480 ppm) values, moderate TiO
2
 

(1.0–1.5 wt%) and MgO (3–9 wt%) values, and low Sr (<365 ppm), 
Nb (<9 ppm), Sr/Y (<16) and La/Lu (<40) values. Overall, these 
geochemical features are similar to late Middle Jurassic (162 Ma) 
plutons in the Dixie Butte area (e.g., Stop 2-2).
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